• 제목/요약/키워드: Taguchi methodology

검색결과 75건 처리시간 0.025초

다성능(多性能) 특성치(特性値)에 관한 안정성설계(安定性設計) (Robust Parameter Design for Multiple Performance Characteristics)

  • 서순근;최종덕
    • 품질경영학회지
    • /
    • 제22권3호
    • /
    • pp.34-53
    • /
    • 1994
  • Taguchi's robust design methodology has focused only on a single performance characteristic or response, but the quality of most products is seldom defined by a characteristic, and is rather the composite of a family of characteristics which are often interrelated and nearly always measured in a variety of units. The multiple performance characteristics problem is how to compromise the conflicts among the selected levels of the design parameters for each individual performance characteristic. In this paper, the modified desirability function using SN ratio which can be optimized by univariate technique is proposed and a parameter design procedure to achieve the best balance among several different response variables is developed We reanalyze two existing case studies by the proposed method and compare these results with ones by the sum of SN ratios and the expected weighted loss.

  • PDF

품질손실을 고려한 경제적 CUSUM 관리도 (A Design of Economic CUSUM Control Chart Incorporating Quality Loss Function)

  • 김정대
    • 산업경영시스템학회지
    • /
    • 제41권4호
    • /
    • pp.203-212
    • /
    • 2018
  • Quality requirements of manufactured products or parts are given in the form of specification limits on the quality characteristics of individual units. If a product is to meet the customer's fitness for use criteria, it should be produced by a process which is stable or repeatable. In other words, it must be capable of operating with little variability around the target value or nominal value of the product's quality characteristic. In order to maintain and improve product quality, we need to apply statistical process control techniques such as histogram, check sheet, Pareto chart, cause and effect diagram, or control charts. Among those techniques, the most important one is control charting. The cumulative sum (CUSUM) control charts have been used in statistical process control (SPC) in industries for monitoring process shifts and supporting online measurement. The objective of this research is to apply Taguchi's quality loss function concept to cost based CUSUM control chart design. In this study, a modified quality loss function was developed to reflect quality loss situation where general quadratic loss curve is not appropriate. This research also provided a methodology for the design of CUSUM charts using Taguchi quality loss function concept based on the minimum cost per hour criterion. The new model differs from previous models in that the model assumes that quality loss is incurred even in the incontrol period. This model was compared with other cost based CUSUM models by Wu and Goel, According to numerical sensitivity analysis, the proposed model results in longer average run length in in-control period compared to the other two models.

Removal of toxic hydroquinone: Comparative studies on use of iron impregnated granular activated carbon as an adsorbent and catalyst

  • Tyagi, Ankit;Das, Susmita;Srivastava, Vimal Chandra
    • Environmental Engineering Research
    • /
    • 제24권3호
    • /
    • pp.474-483
    • /
    • 2019
  • In this study, iron (Fe) impregnated granular activated carbon (Fe-GAC) has been synthesized and characterized for various properties. Comparative studies have been performed for use of Fe-GAC as an adsorbent as well as a catalyst during catalytic oxidation of hydroquinone (HQ). In the batch adsorption study, effect of process parameter like initial HQ concentration ($C_o=25-1,000mg/L$), pH (2-10), contact time (t: 0-24 h), temperature (T: $15-45^{\circ}C$) and adsorbent dose (w: 5-50 g/L) have been studied. Maximum HQ adsorption efficiency of 75% was obtained at optimum parametric condition of: pH = 4, w = 40 g/L and t = 14 h. Pseudo-second order model best-fitted the HQ adsorption kinetics whereas Langmuir model best-represented the isothermal equilibrium behavior. During oxidation studies, effect of various process parameters like initial HQ concentration ($C_o:20-100mg/L$), pH (4-8), oxidant dose ($C_{H2O2}:0.4-1.6mL/L$) and catalyst dose (m: 0.5-1.5 g/L) have been optimized using Taguchi experimental design matrix. Maximum HQ removal efficiency of 83.56% was obtained at optimum condition of $C_o=100mg/L$, pH = 6, $C_{H2O2}=0.4mL/L,$ and m = 1 g/L. Overall use of Fe-GAC during catalytic oxidation seems to be a better as compared to its use an adsorbent for treatment of HQ bearing wastewater.

강건설계방법을 활용한 창의적 문제해결 실습과정 (The Performance of the National Authorization System of Private Qualification)

  • 김태운
    • 공학교육연구
    • /
    • 제11권1호
    • /
    • pp.64-75
    • /
    • 2008
  • 신제품의 개발 및 제품실현화 과정은 창의적 문제해결과정을 통한 아이디어를 창출하고 피드백과 순환적인 과정을 통해서 이를 발전시키고 보완해 나가는 과정이다. 이러한 제품실현화 과정의 초기 단계인 개념설계와 제품개발의 단계가 절약가능한 비용요소의 대부분을 차지하며 이 단계의 최적 설계를 위한 방안으로 다구치가 제안한 강건설계 방법이 효과적이다. 품질은 검사를 통해서가 아니고 공학적 접근을 통해 향상될 수 있다. 강건설계는 제품의 연구개발 단계에 있어서 행해지는 공학적 방법론으로서 제품의 품질에 영향을 미치는 변화자체를 제거하지는 않고 변화에 의한 효과를 최소화함으로써 품질을 향상시키고 최적 디자인 파라미터를 얻고자 하는 것이다. 본 연구의 목적은 강건설계 방법을 이용하여 제품개발단계에서 효과적인 설계 파라미터를 탐색하는 방법을 소개하고, 이를 공학교육의 창의성 개발과 관련하여 적용해 보는 사례를 소개하고자 하는 것이다. 주된 연구내용은 창의적 문제해결과정과 강건설계의 파라미터 선정 과정을 제시하고, 강건설계 방법을 창의성 교육에 활용하는 과정 및 이에 따른 실습내용이다. 강건설계의 실습을 위해서 투석기를 이용하였고, 실험한 투석기와 유사한 기능을 수행 할 수 있는 장비를 창의적 접근방법으로 디자인 하도록 하였다. 또한 레퍼런스 모델을 제시하여 아이디어를 비교평가 하게 함으로써 창의적 문제해결의 반복 순환적 과정을 체험하게 하였다.

Analysis of cutting forces and roughness during hard turning of bearing steel

  • Bouziane, Abderrahim;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Keblouti, Ouahid;Belhadi, Salim
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.285-294
    • /
    • 2018
  • An experimental study has been carried out to analyze the effect of cutting parameters (cutting speed, feed and depth of cut) and tool nose radius on the surface roughness and the cutting force components during hard turning of the AISI 52100 (50 HRC) steel with a ceramic cutting tool. The tests have been conducted according to the methodology of planning experiments, based on an orthogonal plan of Taguchi (L27). By using the response surface methodology (RSM), the components of the cutting force and the roughness of the machined surface were modeled and the effects of the input parameters were analyzed statistically by ANOVA and RSM. The results show that the feed (f), the tool nose radius (r), the cutting speed (Vc), the interaction between feed and tool nose radius ($f{\times}r$) as well as that of the quadratic effect ($f^2$) all have significant effects on the surface roughness (Ra). The feed is the most influencing factor with a contribution of 47.31%. The components of the cutting force were strongly influenced by the depth of cut, followed by the advance with a lower degree. By comparing the experimental values with those predicted by the models of the cutting force components and the surface roughness, it appears that they are in very good correlation.

인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구 (A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm)

  • ;김영진
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • 제3권1호
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.

탄성체의 에너지 변환을 이용한 점프 로봇의 기구변수 최적화 (Kinematic Parameter Optimization of Jumping Robot Using Energy Conversion of Elastic Body)

  • 최재능;이상호;정경민;서태원
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.53-58
    • /
    • 2016
  • Various jumping robot platforms have been developed to carry out missions such as rescues, explorations, or inspections of dangerous environments. We suggested a jumping robot platform using energy conversion of the elastic body like the bar of a pole vault, which is the main part in which elastic force occurs. The compliant link was optimized by an optimization method based on Taguchi methodology, and the robot's leaping ability was improved. Among the parameters, the length, width, and thickness of the link were selected as design variables first while the others were fixed. The level of the design variables was settled, and an orthogonal array about its combination was made. In the experiment, dynamic simulations were conducted using the DAFUL program, and response table and sensitivity analyses were performed. We found optimized values through a level average analysis and sensitivity analysis. As a result, the maximum leaping height of the optimized robot increased by more than 6.2% compared to the initial one, and these data will be used to design a new robot.

수면 주행 로봇의 안정성 향상을 위한 정적 꼬리 기구변수 최적화 (Robust Optimal Design of Tail Geometry for Stable Water-running Robots)

  • 이동규;장재형;서태원
    • 한국생산제조학회지
    • /
    • 제25권2호
    • /
    • pp.132-137
    • /
    • 2016
  • Biomimetics involves the design of robotic platforms inspired from living creatures to achieve efficient operation under environmental conditions. A development within biomimetics involves investigating the function of a tail and applying it to robot design. This study aims to define the function of a static tail for water-running robots, and optimize its geometric and compliance parameters. The rolling angle of the tail is determined by the objective function, while the area and fillet ratio are used for geometric design and compliance parameters in the rolling and yawing directions. Repeated motion of the water-running robot's footpads at frequencies of 9 and 10 Hz is used as the operating condition. Robust design based on the Taguchi methodology is performed via orthogonal arrays. The optimized tail design derived in this study will be implemented in a robotic platform to improve steering and balancing functions in the pitching direction.

잠재적고객요구개선지수를 이용한 교육서비스품질 기대손실평가 모형에 관한 연구 (A Study on Education Service Quality's Expected Loss Evaluation Model with Potential Customer Satisfaction Improvement Index)

  • 장용혁;조유진;강경식
    • 대한안전경영과학회지
    • /
    • 제21권2호
    • /
    • pp.15-23
    • /
    • 2019
  • Among service industries of knowledge based economic era, the roles of educational service field are becoming more important and standard of educational service makes a direct effect on economic development and social growth. Therefore, accurate measurement of service quality is the most important assignment and the measurement of the service quality remains difficult assignment. So, this researcher classified quality attributes applying weighted value and found potential satisfaction level(PSL) and potential customer demand improvement index(PCDI) for trainees participating in national manpower business so as to suggest measurement of service quality and easiness of use and then, calculated satisfaction position and opportunity cost by quality factor with Taguchi's loss fraction. And, improvable satisfaction level was measured, opportunity cost by degree of customer dissatisfaction was quantitatively measured, and a model that can indicate with economic factors was suggested. In addition, methodology of measuring quality cost that can be reduced by quality improvement and direction of strategic decision-making for deciding items to be improved preferentially were suggested with qualitative index that can indicate the degree of customers' dissatisfaction by loss.