• Title/Summary/Keyword: Taguchi Method Analysis of variance

Search Result 75, Processing Time 0.023 seconds

Evaluation of Uncertainty Importance Measure by Experimental Method in Fault Tree Analysis (결점나무 분석에서 실험적 방법을 이용한 불확실성 중요도 측도의 평가)

  • Cho, Jae-Gyeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.187-195
    • /
    • 2009
  • In a fault tree analysis, an uncertainty importance measure is often used to assess how much uncertainty of the top event probability (Q) is attributable to the uncertainty of a basic event probability ($q_i$), and thus, to identify those basic events whose uncertainties need to be reduced to effectively reduce the uncertainty of Q. For evaluating the measures suggested by many authors which assess a percentage change in the variance V of Q with respect to unit percentage change in the variance $\upsilon_i$ of $q_i$, V and ${\partial}V/{\partial}{\upsilon}_i$ need to be estimated analytically or by Monte Carlo simulation. However, it is very complicated to analytically compute V and ${\partial}V/{\partial}{\upsilon}_i$ for large-sized fault trees, and difficult to estimate them in a robust manner by Monte Carlo simulation. In this paper, we propose a method for experimentally evaluating the measure using a Taguchi orthogonal array. The proposed method is very computationally efficient compared to the method based on Monte Carlo simulation, and provides a stable uncertainty importance of each basic event.

A Study on the Elongation of Polymer Extrusion Film (고분자압출필름의 연신에 관한 연구)

  • Choi, Man-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.660-665
    • /
    • 2014
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the elongation of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film elongation of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance(ANOVA) for maximization of the breathable film elongation influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that stretching ratio were the most influential factor on the film elongation. The best results of film elongation were obtained at lower stretching ratio.

A Study on the Vibration Parameters for High Speed Face Milling Machining (고속 정면밀링가공을 위한 진동 파라미터에 관한 연구)

  • Jang, Sung-Min;Lee, Seung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4149-4155
    • /
    • 2013
  • High speed machining for higher cutting speed and feedrate lead to a increase of surface quality and material removal rate. This paper presents a study of the influence of cutting conditions on the vibration characteristics obtained by machining with face milling cutter for high speed machining. In this paper, Taguchi experimental design method which is based on orthogonal array table was applied to study vibration characteristics with high speed face milling cutter. The experimental conditions used orthogonal array of $L_{27}(3^{13})$. In this work, design and analysis of experiments is conducted to study the effects of these parameters on the vibration by using the S/N ratio, analysis of variance. Four cutting parameters namely, feed rate, champer length, cutting speed, and depth of cut were optimized with consideration of vibration characteristics.

A Study on the Improvement of Spot Welding Quality of Wire Cu Alloy by Taguchi Method for Dynamic Characteristics (동특성 다구찌 기법을 통한 Cu합금 와이어의 스폿용접 품질향상 연구)

  • Suk, Ho-sam;Kim, Yeun-sung;Yoo, Choon-burn
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.1003-1020
    • /
    • 2017
  • Purpose: The purpose of this study is to find the optimum working conditions for spot welding of wire Cu alloys to achieve high-level quality. The parts subject to spot welding are brush card assemblies, which are the main module of the electric movement method of the car seat. Methods: In this study, the signal-to-noise ratio(SN ratio) and the loss function [L(y)] are used as Taguchi method for dynamic characteristics. Results: The results of the study are as follows. First, the analysis of variance using SN ratio showed 6 significant factors(p = 0.1% or less) among 7 factors except press force. Second, the optimal design of the dynamic characteristics is the tip exchange cycle: 50,000 ea., the welding time is 110 ms, the pressing force is 11 kgf/cm2, the rise time is 40 ms, and the tip dressing is 3,000 ea., Tip angle is 12o and electric current is 1,800 A. Conclusion: The validity of the spot welding process of the manufacturer's brush card assembly was verified and proved to be consistent with the study results. The results of this study are expected to standardize the welding conditions and guarantee the quality level required by the customers.

Parameter Selection for the Milling of Thin Wall (얇은 벽면의 밀링가공을 위한 절삭 파라미터의 선정)

  • Jung, Jong-Yun;Cui, Heng-Bo;Moon, Dug-Hee;Lee, Choon-Man
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • 재료의 중량과 강도는 기계부품 특히 항공기의 부품에 중요한 요소가 되므로 가볍고 강인한 열처리 강화 알루미늄이나 티타늄 등이 많이 사용된다. 그러나 알루미늄은 용융점이 낮기 때문에 기계 가공 시 발생되는 열에 의해 부품이 얇고 길수록 쉽게 변형된다. 본 연구는 end milling 가공에서 최적의 절삭 parameter를 선정하여 열 변형을 최소화한다. 밀링 가공의 절삭속도, 이송속도, 절삭 깊이를 실험 인자로 정하여 다구찌 방법으로 실험을 계획하고 얇은 시편을 절삭하여 특성을 측정한다. 결과를 분산분석 (ANOVA) 과 signal to noise 비를 (SNR) 분석하여 최소 열 변형의 절삭 parameter를 찾는다. 실험의 data를 SQL database 프로그램화하여 다양한 절삭 환경에서 최소 열 변형과 최소 표면거칠기의 parameter를 찾을 수 있도록 하였다.

Statistical Analysis on Process Variables in Linear Roll-CMP (선형 Roll-CMP에서 공정변수에 관한 통계적 분석)

  • Wang, Han;Lee, Hyunseop;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.

Study of Robust Design of a Off-road Diesel Engine considering Emission characteristics of NOx and PM (NOx와 PM 배출물 특성을 고려한 오프로드 디젤 엔진의 강건 설계에 관한 연구)

  • Chung, Jin-Eun;Ahn, Jueng-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4729-4735
    • /
    • 2014
  • To protect the environment, the regulation of emissions from off-road engines which are relatively neglected, is being reinforced. This paper deals with the robust design of off-road diesel engines considering the emission characteristics. Measurements of the NOx and PM levels based on the DOE were carried out. The injector hole number, injection timing and EGR rate were selected as the control factors. The orthogonal arrays table $L_9(3^3)$ was made from 2 or 3 levels for each factor and measurements of emissions were accomplished based on the table. The small-the-better SN ratio according to the Taguchi method was evaluated. The ANOVA (analysis of variance) for the SN ratio was conducted. The injection timing on the NOx emissions and the EGR rate on the PM have the largest effect on the low-load operation condition. The confidence levels of the control factors were more than 90%.

SHAPE DESIGN FOR DISC OF A DOUBLE-ECCENTRIC BUTTERFLY VALVE USING THE TOPOLOGY OPTIMIZATION TECHNIQUE (위상최적설계 기법을 이용한 이중편심 버터플라이 밸브의 디스크에 대한 형상설계)

  • Yang, S.M.;Baek, S.H.;Kang, S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.61-69
    • /
    • 2012
  • In this paper, the shape design process is briefly discussed emphasizing the use of topology optimization in the conceptual design stage. The basic idea is to view feasible domains for sensitivity region concepts. In this method, the main process consists of two steps: as the design moves further inside the feasible domain using Taguchi method, and thus becoming more successful topology optimization, the sensitivity region becomes larger. In designing a double-eccentric butterfly valve, related to hydrodynamic performance and disc structure, are discussed where the use of topology optimization has proven to dramatically improve an existing design and significantly decrease the development time of a shape design. CFD analysis results demonstrate the validity of this approach.

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

Prediction and optimization of thinning in automotive sealing cover using Genetic Algorithm

  • Kakandikar, Ganesh M.;Nandedkar, Vilas M.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Deep drawing is a forming process in which a blank of sheet metal is radially drawn into a forming die by the mechanical action of a punch and converted to required shape. Deep drawing involves complex material flow conditions and force distributions. Radial drawing stresses and tangential compressive stresses are induced in flange region due to the material retention property. These compressive stresses result in wrinkling phenomenon in flange region. Normally blank holder is applied for restricting wrinkles. Tensile stresses in radial direction initiate thinning in the wall region of cup. The thinning results into cracking or fracture. The finite element method is widely applied worldwide to simulate the deep drawing process. For real-life simulations of deep drawing process an accurate numerical model, as well as an accurate description of material behavior and contact conditions, is necessary. The finite element method is a powerful tool to predict material thinning deformations before prototypes are made. The proposed innovative methodology combines two techniques for prediction and optimization of thinning in automotive sealing cover. Taguchi design of experiments and analysis of variance has been applied to analyze the influencing process parameters on Thinning. Mathematical relations have been developed to correlate input process parameters and Thinning. Optimization problem has been formulated for thinning and Genetic Algorithm has been applied for optimization. Experimental validation of results proves the applicability of newly proposed approach. The optimized component when manufactured is observed to be safe, no thinning or fracture is observed.