• Title/Summary/Keyword: Tagaki-Sugeno fuzzy model

Search Result 8, Processing Time 0.023 seconds

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

GA-based Fuzzy Modelling of Nonlinear Systems (비선형시스템의 유전알고리즘에 기초한 퍼지 모델링)

  • 이현식;진강규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • This paper presents a GA-based fuzzy modelling scheme of nonlinear systems. The fuzzy model is a type of the Sugeno-Tagaki's fuzzy model whose consequence parts are described by a linear continuous dynamic equation as subsystem of a nonlinear system. The centers and width of the membership functions of the fuzzy sets defined over the input space and the orders and parameters of subsystems in the consequence parts are adjusted by a genetic algorithm. The effectiveness of the proposed method is verified

  • PDF

Design of New Channel Adaptive Equalizer for Digital TV (디지털 TV에 적합한 새로운 구조의 채널 적응 등화기 설계)

  • Baek, Deok-Soo;Lee, Wan-Bum;Kim, Hyeoung-Kyun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.2
    • /
    • pp.17-28
    • /
    • 2002
  • Recently, the study on non-linear equalization, self-recovering equalization using the neural Network structure or Fuzzy logic, is lively in progress. In this thesis, if the value of error difference is large, coefficient adaptation rate is bigger, and if being small, it is smaller. We proposed the new FSG(Fuzzy Stochastic Gradient)/CMA algorithm combining TS(Tagaki-Sugeno) fuzzy model having fast convergence rate and low mean square error(MSE) and CMA(Constant Modulus Algorithm) which is prone to ISI and insensitive to phase alteration. As a simulation result of the designed channel adaptive equalizer using the proposed FSG/CMA algorithm, it is shown that SNR is improved about 3.5dB comparing to the conventional algorithm. 

Design of a Fuzzy Model-Based State Observer Using GAs (유전알고리즘에 의한 퍼지모델기반의 상태관측기 설계)

  • 이현식;손영득;김종화;유영호;하윤수;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.162-170
    • /
    • 2001
  • This paper presents a scheme for designing a fuzzy model-bsaed state observer for nonlinear system. For this scheme, a Tagaki-Sugeno type fuzzy model whose consequent part is of the state space form is obtained. In describes the locally linear input/output relationship of a system. The parameters of the fuzzy model are adjusted using a genetic algorithm. Then. fuzzy full-order and reduced-order state observers are designed based on the fuzzy model. A set of simulation works is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

Design of Equalizer using Fussy Stochastic Gradient Algorithm (퍼지 확률 기울기 알고리즘을 이용한 등화기 설계)

  • Park, Hyoung-Keun;Ra, Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.152-159
    • /
    • 2005
  • For high-speed data communication in band-limited channels, main of the bit error are fading and ISI(Inter-Symbol Interference). The common way of dealing with ISI is using equalization in the receiver. In this thesis, channel adaptive equalizer which uses Fuzzy Stochastic Gradient(FSG) and Constant Modulus Algorithm(CMA) is nonlinear equalizer, or Blind equalizer, that works directly on the signals with no training sequences required. This equalizer employs Takagi-Sugeno's fuzzy model that uses the FSG algorithm, to automatically regulate the step size of the descent gradient vector, combining fast convergence rate and low mean square error(MSE), and the CMA which is a special case of Godard's algorithm, to having multiple dispersion constants($R_p$).

Optimal Fuzzy Filter for Nonlinear Systems with Variance Constraints (분산 제약을 갖는 비선형 시스템의 최적 퍼지 필터)

  • Noh, Sun-Young;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 2012
  • In this paper, we consider the optimal fuzzy filter of nonlinear discrete-time with estimation error variance constraint. First, the Takagi and Sugeno(T-S) fuzzy model is employed to approximate the nonlinear system. Next, the error state is mean square bounded, and the steady state variance of the estimation error of each state is not more than the individual predefined value. It is shown that, the addressed problem can be carried out by solving linear matrix inequality(LMI) and some algebraic quadratic matrix inequalities. Finally, some examples are provided to illustrate the design procedure and expected performance through simulations.

State Feedback Linearization of Discrete-Time Nonlinear Systems via T-S Fuzzy Model (T-S 퍼지모델을 이용한 이산 시간 비선형계통의 상태 궤환 선형화)

  • Kim, Tae-Kue;Wang, Fa-Guang;Park, Seung-Kyu;Yoon, Tae-Sung;Ahn, Ho-Kyun;Kwak, Gun-Pyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.865-871
    • /
    • 2009
  • In this paper, a novel feedback linearization is proposed for discrete-time nonlinear systems described by discrete-time T-S fuzzy models. The local linear models of a T-S fuzzy model are transformed to a controllable canonical form respectively, and their T-S fuzzy combination results in a feedback linearizable Tagaki-Sugeno fuzzy model. Based on this model, a nonlinear state feedback linearizing input is determined. Nonlinear state transformation is inferred from the linear state transformations for the controllable canonical forms. The proposed method of this paper is more intuitive and easier to understand mathematically compared to the well-known feedback linearization technique which requires a profound mathematical background. The feedback linearizable condition of this paper is also weakened compared to the conventional feedback linearization. This means that larger class of nonlinear systems is linearizable compared to the case of classical linearization.