• 제목/요약/키워드: Tactile sensors

검색결과 75건 처리시간 0.044초

시각장애인을 위한 보행안내로봇 개발 (Development of Walking Guide Robot for the Blind)

  • 유기호;윤명종;권대규;김남균;강정호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

광촉각 센서와 힘/역학센서의 퍼지융합을 통한 접촉면의 인식 (Recognition of contact surfaces using optical tactile and F/T sensors integrated by fuzzy fusion algorithm)

  • 고동환;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.628-631
    • /
    • 1996
  • This paper proposes a surface recognition algorithm which determines the types of contact surfaces by fusing the information collected by the multisensor system, consisted of the optical tactile and force/torque sensors. Since the image shape measured by the optical tactile sensor system, which is used for determining the surface type, varies depending on the forces provided at the measuring moment, the force information measured by the f/t sensor takes an important role. In this paper, an image contour is represented by the long and short axes and they are fuzzified individually by the membership function formulated by observing the variation of the lengths of the long and short axes depending on the provided force. The fuzzified values of the long and short axes are fused using the average Minkowski's distance. Compared to the case where only the contour information is used, the proposed algorithm has shown about 14% of enhancement in the recognition ratio. Especially, when imposing the optimal force determined by the experiments, the recognition ratio has been measured over 91%.

  • PDF

3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템 (Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface)

  • 한헌수
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

시각 장애인 보행안내를 위한 장애물 분포의 3차원 검출 및 맵핑 (3D Detection of Obstacle Distribution and Mapping for Walking Guide of the Blind)

  • 윤명종;정구영;유기호
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.155-162
    • /
    • 2009
  • In walking guide robot, a guide vehicle detects an obstacle distribution in the walking space using range sensors, and generates a 3D grid map to map the obstacle information and the tactile display. And the obstacle information is transferred to a blind pedestrian using tactile feedback. Based on the obstacle information a user plans a walking route and controls the guide vehicle. The algorithm for 3D detection of an obstacle distribution and the method of mapping the generated obstacle map and the tactile display device are proposed in this paper. The experiment for the 3D detection of an obstacle distribution using ultrasonic sensors is performed and estimated. The experimental system consisted of ultrasonic sensors and control system. In the experiment, the detection of fixed obstacles on the ground, the moving obstacle, and the detection of down-step are performed. The performance for the 3D detection of an obstacle distribution and space mapping is verified through the experiment.

텍스처 인지를 위한 PZT/Epoxy 나노 복합소재 기반 유연 압전 촉각센서 (Highly Flexible Piezoelectric Tactile Sensor based on PZT/Epoxy Nanocomposite for Texture Recognition)

  • 민유림;김윤정;김정남;서새롬;김혜진
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.88-94
    • /
    • 2023
  • Recently, piezoelectric tactile sensors have garnered considerable attention in the field of texture recognition owing to their high sensitivity and high-frequency detection capability. Despite their remarkable potential, improving their mechanical flexibility to attach to complex surfaces remains challenging. In this study, we present a flexible piezoelectric sensor that can be bent to an extremely small radius of up to 2.5 mm and still maintain good electrical performance. The proposed sensor was fabricated by controlling the thickness that induces internal stress under external deformation. The fabricated piezoelectric sensor exhibited a high sensitivity of 9.3 nA/kPa ranging from 0 to 10 kPa and a wide frequency range of up to 1 kHz. To demonstrate real-time texture recognition by rubbing the surface of an object with our sensor, nine sets of fabric plates were prepared to reflect their material properties and surface roughness. To extract features of the objects from the detected sensing data, we converted the analog dataset to short-term Fourier transform images. Subsequently, texture recognition was performed using a convolutional neural network with a classification accuracy of 97%.

Short Review of 3D Printed Piezoelectric Sensors

  • Chang, Sang-Mi;Kang, Chong-Yun;Hur, Sunghoon
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.279-285
    • /
    • 2022
  • Recently, 3D printing technology has gained increased attention in the manufacturing industry because it allows the manufacturing of complex but sophisticated structures as well as moderate production speed. Owing to advantages of 3D printers, such as flexible design, customization, rapid prototyping, and ease of access, can also be advantageous to sensor developments, 3D printing demands have increased in various active device fields, including sensor manufacturing. In particular, 3D printing technology is of significant interest in tactile sensor development where piezoelectric materials are typically embedded to acquire voltage signals from external stimuli. In regard with piezoelectricity, researchers have worked with various piezoelectric materials to achieve high piezoelectric response, but the structural approach is limited because ceramics have been regarded as challenging materials for complex design owing to their limited manufacturing methods. If appropriate piezoelectric materials and approaches to design are used, sensors can be fabricated with the improved piezoelectric response and high sensitivity that cannot be found in common bulk materials. In this study, various 3D printing technologies, material combinations, and applications of various piezoelectric sensors using the 3D printing method are reviewed.

힘 센서 NT, BT, RT에의 응용 (Applications of Force Sensors for NT, BT and RT)

  • 강대임;김민석;김종호;박연규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1761-1766
    • /
    • 2004
  • In this lecture, we reviewed the principle and types of force sensors with strain gages, tactile sensors based on MEMS and force sensor as well as nano force sensors. Also we investigated applications of force sensors for NT, BT and RT.

  • PDF

Blockchain and Physically Unclonable Functions Based Mutual Authentication Protocol in Remote Surgery within Tactile Internet Environment

  • Hidar, Tarik;Abou el kalam, Anas;Benhadou, Siham;Kherchttou, Yassine
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.15-22
    • /
    • 2022
  • The Tactile Internet technology is considered as the evolution of the internet of things. It will enable real time applications in all fields like remote surgery. It requires extra low latency which must not exceed 1ms, high availability, reliability and strong security system. Since it appearance in 2014, tremendous efforts have been made to ensure authentication between sensors, actuators and servers to secure many applications such as remote surgery. This human to machine relationship is very critical due to its dependence of the human live, the communication between the surgeon who performs the remote surgery and the robot arms, as a tactile internet actor, should be fully and end to end protected during the surgery. Thus, a secure mutual user authentication framework has to be implemented in order to ensure security without influencing latency. The existing methods of authentication require server to stock and exchange data between the tactile internet entities, which does not only make the proposed systems vulnerables to the SPOF (Single Point of Failure), but also impact negatively on the latency time. To address these issues, we propose a lightweight authentication protocol for remote surgery in a Tactile Internet environment, which is composed of a decentralized blockchain and physically unclonable functions. Finally, performances evaluation illustrate that our proposed solution ensures security, latency and reliability.

분리층의 상대 변위를 이용한 고분자 미끄럼 촉각 센서 개발 (Development of Polymer Slip Tactile Sensor Using Relative Displacement of Separation Layer)

  • 김성준;최재영;문형필;최혁렬;구자춘
    • 로봇학회논문지
    • /
    • 제11권2호
    • /
    • pp.100-107
    • /
    • 2016
  • To realize a robot hand interacting like a human hand, there are many tactile sensors sensing normal force, shear force, torque, shape, roughness and temperature. This sensing signal is essential to manipulate object accurately with robot hand. In particular, slip sensors make manipulation more accurate and breakless to object. Up to now several slip sensors were developed and applied to robot hand. Many of them used complicate algorithm and signal processing with vibration data. In this paper, we developed novel principle slip sensor using separation layer. These two layers are moved from each other when slip occur. Developed sensor can sense slip signal by measuring this relative displacement between two layers. Also our principle makes slip signal decoupled from normal force and shear force without other sensors. The sensor was fabricated using the NBR(acrylo-nitrile butadiene rubber) and the Ecoflex as substrate and a paper as dielectric. To verify our sensor, slip experiment and normal force decoupling test were conducted.