• Title/Summary/Keyword: Tactile device

Search Result 90, Processing Time 0.038 seconds

Miniature Ultrasonic and Tactile Sensors for Dexterous Robot

  • Okuyama, Masanori;Yamashita, Kaoru;Noda, Minoru;Sohgawa, Masayuki;Kanashima, Takeshi;Noma, Haruo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.215-220
    • /
    • 2012
  • Miniature ultrasonic and tactile sensors on Si substrate have been proposed, fabricated and characterized to detect objects for a dexterous robot. The ultrasonic sensor consists of piezoelectric PZT thin film on a Pt/Ti/$SiO_2$ and/or Si diaphragm fabricated using a micromachining technique; the ultrasonic sensor detects the piezoelectric voltage as an ultrasonic wave. The sensitivity has been enhanced by improving the device structure, and the resonant frequency in the array sensor has been equalized. Position detection has been carried out by using a sensor array with high sensitivity and uniform resonant frequency. The tactile sensor consists of four or three warped cantilevers which have NiCr or $Si:B^+$ piezoresistive layer for stress detection. Normal and shear stresses can be estimated by calculation using resistance changes of the piezoresitive layers on the cantilevers. Gripping state has been identified by using the tactile sensor which is installed on finger of a robot hand, and friction of objects has been measured by slipping the sensor.

A Haptic Navigation System for Visually Impaired Persons (시각장애인을 위한 햅틱 네비게이션 시스템)

  • Kim, Sang-Youn;Cho, Seong-Man
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.133-143
    • /
    • 2011
  • This paper proposes a mobile navigation system which haptically presents the way to go to visually impaired persons. In order to convey the tactile information to the visually impaired persons, we develop a new tactile module with a solenoid, a permanent magnet and an elastic spring. Furthermore, we suggest 2D vibration flow which originates from one point and gradually propagates to other points on a surface of the haptic navigation system. The tactile module and the vibration flow method are incorporated into the proposed haptic navigation system and they stimulate the user's finger pad and palm, respectively. We conduct experiments to investigate that the proposed navigation system haptically provides the direction to the users. From the experimental results, we verify that the proposed system can generate enough tactile sensation to guide the direction to go in real-time.

Development of a Photopolymer-based Flexible Tactile Sensor using Layered Fabrication and Direct Writing (적층조형과 직접주사방식을 결합한 광경화성 수지 기반의 신축성 촉각센서의 제작)

  • Woo, Sang Gu;Lee, In Hwan;Kim, Ho-Chan;Lee, Kyung Chang;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.8-14
    • /
    • 2014
  • Many kinds of robots and machines have been developed to replace human laborin industrial and medical fields, as well as domestic life. In these applications, the device sneed to obtain environmental data using diverse sensors. Among such sensors, the tactile sensor is important because of its ability to get information regarding surface texture and force through the use of mechanical contact. In this research, a simple tactile sensor was developed using the direct writing of pressure sensitive material and layered fabrication of photocurable material. The body of the sensor was fabricated using layered fabrication, and pressure sensitive materials were dispensed between the layers using direct writing. We examined the line fabrication characteristics of the pressure sensitive material according to nozzle dispensing conditions. A simple $4{\times}4$ array flexible tactile sensor was successfully fabricated using the proposed process.

Vibrotactile Glove Mouse (진동촉각 글러브 마우스)

  • Park, Jun-Hyung;Jeong, Ju-Seok;Jang, Tae-Jeong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.741-744
    • /
    • 2009
  • In this paper, We introduce the glove mouse using a Gyroscope, acceleration sensor, Pin-type Viboratctile Display Device and USB HID. The device recognize a user's wrist by Gyroscope and acceleration sensor in the glove and transmit the data to USB dongle which is recognized the manufactured mouse by Blutooth. Also, using a special application, We transmit the tactile information to user through the Pin-type Vibrotactile Display. We implement wearable system in the glove except USB device. If user want to use general spatial mouse, we recognize mouse USB dongle only without another application. If user want to feel the tactile sensationn, we can use by connecting PC serial communication port to USB dongle.

  • PDF

A study on Web interface for the Blind. (시각장애인을 위한 웹 인터페이스에 관한 연구)

  • Choi, T.J.;Jang, B.T.;Kim, H.K.;Kim, J.K.;Hur, W.
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.559-562
    • /
    • 1999
  • In this paper, we developed on internet based assembly information display system for the blind. The system is consist of hardware and software. The hardware is consist of a voice synthesis device and a tactile display for character information, and the software is consist of internet web browser for the blind and braille program. The tactile-device system consists of a control unit, pin array, pin generator, serial port, and a power supply. The pin exerted by a electromagnetic method, solenoid. The internet web browser separates the character and image from internet web page, and character information in the web page is converted to braille and fed to sound system. Also the image in the web page can be printed developed tactile display. As the results of experiment, the blind could access the internet web site by using this system and understand various internet information.

  • PDF

A mono-material tactile sensor with multi-sensing properties

  • Shida, Katsunori;Yuji, Junnichiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.587-592
    • /
    • 1994
  • To realize artificial device with sensing ability of the human skin, a mono-material tactile sensor with three sensing functions made of some elastic thin electro-conductive rubber sheet with eight latticed patch elements is proposed. This trial sensor provides the information of three kinds of model material characteristics such as thermal property, hardness property and the surface situation of materials by setting up three kinds of surface models as test materials. It can be finally expected to estimate unknown model materials by analyzing the data of the sensor.

  • PDF

모바일 기기용 햅틱스를 위한 센서 및 구동기

  • Kim, Sang-Youn
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.1683-1687
    • /
    • 2009
  • This paper addresses a haptic actuator which can be applied to mobile devices. For haptic feedback in mobile devices, we have to consider not only stimulating force and frequency but also the size and the power consumption of a haptic module. Thus far, vibration motors have been widely used in mobile devices to provide tactile sensation. The reason is that a vibration motor is small enough to be inserted into a mobile device. This paper addresses vibrotactile actuators and other haptic actuators which can generate a wide variety of tactile sensations.

  • PDF

Motion-Recognizing Game Controller with Tactile Feedback (동작인식 및 촉감제공 게임 컨트롤러)

  • Jeon, Seok-Hee;Kim, Sang-Ki;Park, Gun-Hyuk;Han, Gab-Jong;Lee, Sung-Kil;Choi, Seung-Moon;Choi, Seung-Jin;Eoh, Hong-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.1-6
    • /
    • 2008
  • This paper proposes a game controller that provides user motion input and tactile feedback display, in addition to the traditional button-type input. The device utilizes both an accelerometer and an infrared camera in order to estimate 3D position and to recognize user motion. The information from the accelerometer and the camera are integrated for better performance. Various tactile sensations are presented using a voice-coil type vibrator. We apply the proposed controller to a motion-based game and validate its usability.

  • PDF

Tactile Sensation Display with Electrotactile Interface

  • Yarimaga, Oktay;Lee, Jun-Hun;Lee, Beom-Chan;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.145-150
    • /
    • 2005
  • This paper presents an Electrotactile Display System (ETCS). One of the most important human sensory systems for human computer interaction is the sense of touch, which can be displayed to human through tactile output devices. To realize the sense of touch, electrotactile display produces controlled, localized touch sensation on the skin by passing small electric current. In electrotactile stimulation, the mechanoreceptors in the skin may be stimulated individually in order to display the sense of vibration, touch, itch, tingle, pressure etc. on the finger, palm, arm or any suitable location of the body by using appropriate electrodes and waveforms. We developed an ETCS and investigated effectiveness of the proposed system in terms of the perception of roughness of a surface by stimulating the palmar side of hand with different waveforms and the perception of direction and location information through forearm. Positive and negative pulse trains were tested with different current intensities and electrode switching times on the forearm or finger of the user with an electrode-embedded armband in order to investigate how subjects recognize displayed patterns and directions of stimulation.

  • PDF

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF