• Title/Summary/Keyword: TaN film

Search Result 137, Processing Time 0.026 seconds

The Effects of the Annealing on the Reflow Property of Cu Thin Film (열처리에 따른 구리박막의 리플로우 특성)

  • Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.28-36
    • /
    • 2005
  • In this study, the reflow characteristics of copper thin films which is expected to be used as interconnection materials in the next generation semiconductor devices were investigated. Cu thin films were deposited on the TaN diffusion barrier by metal organic chemical vapor deposition (MOCVD) and annealed at the temperature between 250℃ and 550℃ in various ambient gases. When the Cu thin films were annealed in the hydrogen ambience compared with oxygen ambience, sheet resistance of Cu thin films decreased and the breakdown of TaN diffusion barrier was not occurred and a stable Cu/TaN/Si structure was formed at the annealing temperature of 450℃. In addition, reflow properties of Cu thin films could be enhanced in H₂ ambient. With Cu reflow process, we could fill the trench patterns of 0.16~0.24 11m with aspect ratio of 4.17~6.25 at the annealing temperature of 450℃ in hydrogen ambience. It is expected that Cu reflow process will be applied to fill the deep pattern with ultra fine structure in metallization.

Microstructural investigation of the electroplating Cu thin films for ULSI application (ULSI용 Electroplating Cu 박막의 미세조직 연구)

  • 박윤창;송세안;윤중림;김영욱
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.267-272
    • /
    • 2000
  • Electroplating Cu was deposited on Si(100) wafer after seed Cu was deposited by sputtering first. TaN was deposited as a diffusion barrier before depositing the seed Cu. Electroplating Cu thin films show highly (111)-oriented microstructure for both before and after annealing at $450^{\circ}C$ for 30min and no copper silicide was detected in the same samples, which indicates that TaN barrier layer blocks well the Cu diffusion into silicon substrate. After annealing the electroplating Cu film up to $450^{\circ}C$, the Cu film became columnar from non-columnar, its grain size became larger about two times, and also defects density of stacking faults, twins and dislocations decreased greatly. Thus the heat treatment will improve significantly electromigration property caused by the grain boundary in the Cu thin films.

  • PDF

Resistance Switching Characteristics of Metal/TaOx/Pt with Oxidation degree of metal electrodes

  • Na, Hee-Do;Kim, Jong-Gi;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.187-187
    • /
    • 2010
  • In this study, we investigated the effect of electrodes on resistance switching of TaOx film. Pt, Ni, TiN, Ti and Al metal electrodes having the different oxidation degree were deposited on TaOx/Pt stack. Unipolar resistance switching behavior in Pt or Ni/TaOx/Pt MIM stacks was investigated, but bipolar resistance switching behavior in TiN, Ti or Al /TaOx/Pt MIM stacks was shown. We investigated that the voltage dependence of capacitance was decreased with higher oxidation degree of metal electrodes. Through the C-V results, we expected that linearity ($\alpha$) and quadratic ($\beta$) coefficient was reduced with an increase of interface layer between top electrode and Tantalum oxide. Transmission Electron Microscope (TEM) images depicted the thickness of interface layer formed with different oxidation degree of top electrode. Unipolar resistance switching behavior shown in lower oxidation degree of top electrode was expected to be generated by the formation of the conducting path in TaOx film. But redox reaction in interface between top electrode and Tantalum oxide may play an important role on bipolar resistance switching behavior exhibited in higher oxidation degree of top electrode. We expected that the resistance switching characteristics were determined by oxidation degree of metal electrodes.

  • PDF

Effect of Amine Functional Group on Removal Rate Selectivity between Copper and Tantalum-nitride Film in Chemical Mechanical Polishing

  • Cui, Hao;Hwang, Hee-Sub;Park, Jin-Hyung;Paik, Ungyu;Park, Jea-Gun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.546-546
    • /
    • 2008
  • Copper (Cu) Chemical mechanical polishing (CMP) has been an essential process for Cu wifing of DRAM and NAND flash memory beyond 45nm. Copper has been employed as ideal material for interconnect and metal line due to the low resistivity and high resistant to electro-migration. Damascene process is currently used in conjunction with CMP in the fabrication of multi-level copper interconnects for advanced logic and memory devices. Cu CMP involves removal of material by the combination of chemical and mechanical action. Chemicals in slurry aid in material removal by modifying the surface film while abrasion between the particles, pad, and the modified film facilitates mechanical removal. In our research, we emphasized on the role of chemical effect of slurry on Cu CMP, especially on the effect of amine functional group on removal rate selectivity between Cu and Tantalum-nitride (TaN) film. We investigated the two different kinds of complexing agent both with amine functional group. On the one hand, Polyacrylamide as a polymer affected the stability of abrasive, viscosity of slurry and the corrosion current of copper film especially at high concentration. At higher concentration, the aggregation of abrasive particles was suppressed by the steric effect of PAM, thus showed higher fraction of small particle distribution. It also showed a fluctuation behavior of the viscosity of slurry at high shear rate due to transformation of polymer chain. Also, because of forming thick passivation layer on the surface of Cu film, the diffusion of oxidant to the Cu surface was inhibited; therefore, the corrosion current with 0.7wt% PAM was smaller than that without PAM. the polishing rate of Cu film slightly increased up to 0.3wt%, then decreased with increasing of PAM concentration. On the contrary, the polishing rate of TaN film was strongly suppressed and saturated with increasing of PAM concentration at 0.3wt%. We also studied the electrostatic interaction between abrasive particle and Cu/TaN film with different PAM concentration. On the other hand, amino-methyl-propanol (AMP) as a single molecule does not affect the stability, rheological and corrosion behavior of the slurry as the polymer PAM. The polishing behavior of TaN film and selectivity with AMP appeared the similar trend to the slurry with PAM. The polishing behavior of Cu film with AMP, however, was quite different with that of PAM. We assume this difference was originated from different compactness of surface passivation layer on the Cu film under the same concentration due to the different molecular weight of PAM and AMP.

  • PDF

Microstructure and Thermal Stability of High Permittivity Ta2O5 (Ta2O5 고유전박막의 미세조직과 열적안정성)

  • Min, Seok-Hong;Jung, Byung-Gil;Choi, Jae-Ho;Kim, Byoung-Sung;Kim, Dae-Yong;Shin, Dong-Woo;Cho, Sung-Lae;Kim, Ki-Bum
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.814-819
    • /
    • 2002
  • TiN and TaN films as electrode materials of reactive sputtered $Ta_2$$O_{5}$ were prepared by sputtering to compare their thermal stabilities with $Ta_2$$O_{5}$ The microstructural change of $Ta_2$$O_{5}$ films with annealing was also investigated. As- deposited $Ta_2$$O_{5}$ film on $SiO_2$ was amorphous and annealing of 80$0^{\circ}C$ for 30 min made it transform to $\beta$-Ta$_2$O$_{5}$ crystalline which contains amorphous particles with the size of a few nm. Crystallization temperature of Ta$_2$Ta_2$$O_{5}$ on TaN is higher than that on TiN electrode. The interface between TaN and Ta$_2$O$_{5}$ maintained stably even after vacuum annealing up to $800^{\circ}C$ for 1 hr, but TiN interacted with $Ta_2$$_O{5}$ and so interdiffusion between TiN and $Ta_2$$O_{5}$ occurred by vacuum annealing of 80$0^{\circ}C$ for 1 hr. It indicates that TaN is thermally more stable with $Ta_2$$O_{5}$ than TiN.N.

The Effect of the Oxygen Flow Rate on the Electronic Properties and the Local Structure of Amorphous Tantalum Oxide Thin Films

  • Denny, Yus Rama;Lee, Sunyoung;Lee, Kangil;Kang, Hee Jae;Yang, Dong-Seok;Heo, Sung;Chung, Jae Gwan;Lee, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.398-398
    • /
    • 2013
  • The electronic properties and the local structure of tantalum oxide thin film with variation of oxygen flow rate ranging from 9.5 to 16 sccm (standard cubic centimeters per minute) have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results show that the Ta4f spectrum for all films consist of the strong spin-orbit doublet $Ta4f_{7/2}$ and $Ta4f_{5/2}$ with splitting of 1.9 eV. The oxygen flow rate of the film results in the appearance of new features in the Ta4f at binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV, these peaks attribute to $Ta^{1+}$, $Ta^{2+}$, $Ta^{4+}$/$Ta^{2+}$, and $Ta^{5+}$, respectively. Thus, the presence of non-stoichiometric state from tantalum oxide ($TaO_x$) thin films could be generated by the oxygen vacancies. The REELS spectra suggest the decrease of band gap for tantalum oxide thin films with increasing the oxygen flow rate. The absorption coefficient ${\mu}$ and its fine structure were extracted from the fluorescence mode of extended X-ray absorption fine structure (EXAFS) spectra. In addition, bond distances (r), coordination numbers (N) and Debye-Waller factors (${\sigma}^2$) each film were determined by a detailed of EXAFS data analysis. EXAFS spectrapresent both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the increase of oxygen flow rate.

  • PDF

Characteristics of tantalum nitride thin film resistors deposited on $SiO_2/Si$ substrate using D.C-magnetron sputtering

  • Cuong, Nguyen Duy;Phuong, Nguyen Mai;Kim, Dong-Jin;Kang, Byoung-Don;Kim, Chang-Soo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.64-65
    • /
    • 2005
  • The structural and electrical properties of the films are investigated as a function of nitrogen/argon ratio at room temperature and at various deposition temperatures. The phase changes as $Ta_2N$ or TaN in the films were observed as nitrogen/argon ratio increases from 3% to 25%. The phase changes were associated with a change in the resistivity and TCR (temperature coefficient of resistance) of the films. TCR values of the films deposited at room temperature and different nitrogen contents were negative, and strongly decreased with the increase in nitrogen/argon ratio. The Ta2N films deposited at nitrogen/argon ratio of 3% show improved TCR values and thermal stability with increasing deposition temperature. The $Ta_2N$ films grown at nitrogen/argon ratio of 3% and the temperature of $200^{\circ}C$ showed a TCR value of -47 $ppm/^{\circ}C$, which is close to near-zero TCR in the range of deposition temperature.

  • PDF

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

The Effects of $SiN_x$ Dielectric Thin Films on SAW Properties of the High Frequency SAW Filter for Cellular Communication System ($SiN_x$유전 보호막이 이동통신용 고주파 SAW필터의 특성에 미치는 영향)

  • Lee, Yong-Ui;Lee, Jae-Bin;Kim, Hyeong-Jun;Kim, Yeong-Jin;Yang, Hyeong-Guk;Park, Jong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.5 no.6
    • /
    • pp.650-656
    • /
    • 1995
  • High frequency SAW filters for cellular communications were fabricated by metallizing 36$^{\circ}$Y-X LiTaO$_3$piezoelectric substrate with IIDT type electrodes. It was found that the center frequency of the filter was lowered than as designed. In order to overcome such a drawback and enable a fine tuning of its center frequency, dielectric SiN$_{x}$ thin films were deposited on LiTaO$_3$substrate by PECVD as passivation layer and then frequency responses were also characterized. As a result, the center frequency of the filter could be shifted to a higher frequency with increasing the thickness of SiN$_{x}$ film, because SAW velocity increased with increasing the ratio of the thickness of dielectric thin film to wavelength. The insertion loss of the filter, however, became larger with increasing the thickness of SiN$_{x}$ film.

  • PDF