Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.10.814

Microstructure and Thermal Stability of High Permittivity Ta2O5  

Min, Seok-Hong (Dept. of Metal and Materials Engineering, Kangnung National University)
Jung, Byung-Gil (Dept. of Metal and Materials Engineering, Kangnung National University)
Choi, Jae-Ho (Dept. of Metal and Materials Engineering, Kangnung National University)
Kim, Byoung-Sung (School of Materials Science and Engineering, Seoul National Univeristy)
Kim, Dae-Yong (School of Materials Science and Engineering, Seoul National Univeristy)
Shin, Dong-Woo (School of Materials Science and Engineering, Seoul National Univeristy)
Cho, Sung-Lae (School of Materials Science and Engineering, Seoul National Univeristy)
Kim, Ki-Bum (School of Materials Science and Engineering, Seoul National Univeristy)
Publication Information
Korean Journal of Materials Research / v.12, no.10, 2002 , pp. 814-819 More about this Journal
Abstract
TiN and TaN films as electrode materials of reactive sputtered $Ta_2$$O_{5}$ were prepared by sputtering to compare their thermal stabilities with $Ta_2$$O_{5}$ The microstructural change of $Ta_2$$O_{5}$ films with annealing was also investigated. As- deposited $Ta_2$$O_{5}$ film on $SiO_2$ was amorphous and annealing of 80$0^{\circ}C$ for 30 min made it transform to $\beta$-Ta$_2$O$_{5}$ crystalline which contains amorphous particles with the size of a few nm. Crystallization temperature of Ta$_2$Ta_2$$O_{5}$ on TaN is higher than that on TiN electrode. The interface between TaN and Ta$_2$O$_{5}$ maintained stably even after vacuum annealing up to $800^{\circ}C$ for 1 hr, but TiN interacted with $Ta_2$$_O{5}$ and so interdiffusion between TiN and $Ta_2$$O_{5}$ occurred by vacuum annealing of 80$0^{\circ}C$ for 1 hr. It indicates that TaN is thermally more stable with $Ta_2$$O_{5}$ than TiN.N.
Keywords
${Ta_2}{O_5}$; TiN; TaN; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.C. May and M.H. Woods, IEEE Trans. Electron Devices, ED-26, 2 (1979)
2 R. Ramesh, Thin Film Ferroelectric Materials and Devices, p.2, Kluwer Academic Publishers, (1997)
3 T. Aoyama, S. Saida, Y. Okayama, M. Fujisaki, K. Imai and T. Arikado, J. of the Electrochemical Society, 143(3), 977 (1996)   DOI
4 D. Laviale, J.C. Oberlin and R. A. Devine, Appl. Phys. Lett., 65(16), 2021 (1994)   DOI   ScienceOn
5 S. Kamiyama, T. Saeki, H. Mori and Y. Numasawa, IEEE IEDM Tech. Dig., 827 (1991)
6 S. Kamiyama, P. Y. Lesaicherre, H. Suzuki, A. Sakai, I. Nishiyama and A. Ishitani, J. of the Electrochemical Society, 140(6), 1617 (1993)   DOI
7 H. Shinriki and M. Nakata, IEEE Trans. Electron Devices, 38(3), 455 (1991)   DOI   ScienceOn
8 M. Saitoh, T. Mori and H. Tamura, IEEE IEDM Tech. Dig., 680 (1986)
9 H. Shinriki, M. Nakata, Y. Nishioka and K. Mukai, IEEE Electron Devices Lett, 10(11), 514 (1989)   DOI   ScienceOn
10 Y. Nishioka, H. Shinriki and K. Mukai, J. Appl. Phys., 61(6), 2335 (1987)   DOI
11 T. Dimitrova, K. Arshak, and E. Atanassova, Thin Solid Films, 381, 31 (2001)   DOI   ScienceOn
12 S. Kamiyama, H. Suzuki and H. Watanabe, J. of the Electrochemical Society, 141(5), 1246 (1994)   DOI
13 H. Matsuhashi and S. Nishikawa, Jpn. J. Appl. Phys., 33(3A), 1293 (1994)   DOI
14 J.P. Chang, M.L. Steigerwald, R.M. Fleming, R.L. Opila, and G.B. Alers, Appl. Phys. Lett., 74(24), 3705 (1999)   DOI
15 A. Pignolet, G.M. Rao, S.B. Krupanidhi, Thin Solid Film, 258, 230 (1995)   DOI   ScienceOn
16 P.H. Chang and H.Y. Liu, Thin solid film, 258, 56 (1995) Chang, P.H.;Liu, H.Y.   DOI   ScienceOn
17 E. Atanassova, T. Dimitrova, J. Koprinarova, Appl. Surf. Sci., 84, 193 (1995)   DOI   ScienceOn
18 H.J. Lee, R. Sinclair, M.B. Lee and H.D. Lee, J. Appl. Phys., 83(1), 139 (1998)   DOI   ScienceOn
19 K. Ishibashi, B.K. Patnaik, N.R. Parikh, G.S. Sandhu and P.C. Fazan, J. Vac. Sci. Technol. B., 12(4), 2822 (1994)   DOI   ScienceOn