• 제목/요약/키워드: TYR

검색결과 415건 처리시간 0.025초

Formation of Cross-Linked Products of The Reaction Center D1 Protein in Photosystem II under Light Stress

  • Uchida, Suguru;Kato, Yoji;Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.382-384
    • /
    • 2002
  • When illuminated with strong visible light, the reaction center Dl protein of photo system II is photodamage and degraded. Reactive oxygen species and endogenous cationic radicals generated by photochemical reactions are the cause of the damage to the Dl protein. Recently we found that the photodamaged Dl protein cross-links with the surrounding polypeptides such as D2 and CP43 in photosystem II. As the cross-linking reaction is dependent on the presence of oxygen, reactive oxygen species are suggested to be involved. Among the reactive oxygen species examined, ? OH was most effective in the formation of the cross-linked products. These results indicate that the cross-linking is mostly due to ? OH generated at photosystem II. The cross-linking site of the Dl protein is not known. As several tyrosine residues exist at the D­E loop of the Dl protein, there is a possibility that di-Tyr is formed between the D­E loop of the Dl protein and surrounding polypeptides during the strong illumination. Therefore, we examined the formation of di-Tyr using the monoclonal antibody against di-Tyr under excess illumination of the photosystem II membranes. The results obtained here suggest that no di-Tyr is formed during the excess illumination of photosystem II.

  • PDF

INTRACEREBROVENTRICULARLY ADMINISTERED PHENYLALANINE AND TYROSINE: EFFECTS ON FEEDING BEHAVIOUR AND NOREPINEPHRINE CONCENTRATIONS OF SPECIFIC BRAIN SITES IN THE CHICKEN

  • Choi, Y.-H.;Furuse, M.;Okumura, J.;Shimoyama, Y.;Sugahara, K.;Denbow, D.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제9권3호
    • /
    • pp.255-259
    • /
    • 1996
  • A study was carried out to investigate the action of central L-pheylalanine (Phe) and L-tyrosine (Tyr) on food intake of the chicken. In the first trial, Phe ($200{\mu}g/10{\mu}l$) or saline was acutely administered into the right lateral ventricle (i.c.v.) of chickens (5 birds per each group). Birds (4 birds per each group) were administered with the i.c.v. Tyr ($200{\mu}g/10{\mu}l$) or saline in the second trial. The brains of the birds were removed for catecholamine assy 30 min postadministration. Catecholamine concentrations were measured at specific sites of the brain (LH: lateral hypothalamus, PVN: paraventricular nucleus, and VMH: ventromedial hypothalamus). No significant effect of amino acids on the concentration of norepinephrine of brain sites investigated was detected. Food intake and rectal body temperature were also monitored for 6 h after central administrations of Phe, Tyr or saline (5 birds per each group). Both Phe and Tyr, up to $1mg/10{\mu}l$, failed to modulate food intake or rectal body temperature.

Site-directed Mutagenesis of Tyrosine 108 Residue in Human Glutathione S-Transferase P1-1

  • Ahn, So-Youn;Jeon, Sang-Hoon;Park, Hee-Joong;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1188-1192
    • /
    • 2003
  • In order to study the role of residue in the active site of glutathione S-transferase (GST), Tyr 108 residue in human GST P1-1 was replaced with alanine, phenylalanine and tryptophan by site-directed mutagenesis to obtain mutants Y108A, Y108F and Y108W. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The substitutions of Tyr108 significantly affected $K_m^{CDNB}$ and $K_m^{ETA}$, whereas scarcely affected $K_m^{GSH}$. The substitutions of Tyr108 also significantly affected $I_{50}$ of ETA, an electrophilic substrate-like compound. The effect of these substitutions on kinetic parameters and the response to inhibition suggests that tyrosine 108 in hGST P1-1 contributes to the binding of the electrophilic substrate and a major determinant in the binding of CDNB is the aromatic ring of Tyr108, not its hydroxyl group.

Macrophage inhibitory cytokine-1 transactivates ErbB family receptors via the activation of Src in SK-BR-3 human breast cancer cells

  • Park, Yun-Jung;Lee, Han-Soo;Lee, Jeong-Hyung
    • BMB Reports
    • /
    • 제43권2호
    • /
    • pp.91-96
    • /
    • 2010
  • The function of macrophage inhibitory cytokine-1 (MIC-1) in cancer remains controversial, and its signaling pathways remain poorly understood. In this study, we demonstrate that MIC-1 induces the transactivation of EGFR, ErbB2, and ErbB3 through the activation of c-Src in SK-BR-3 breast cells. MIC-1 induced significant phosphorylation of EGFR at Tyr845, ErbB2 at Tyr877, and ErbB3 at Tyr1289 as well as Akt and p38, Erk1/2, and JNK mitogen-activated protein kinases (MAPKs). Treatment of SK-BR-3 cells with MIC-1 increased the phosphorylation level of Src at Tyr416, and induced invasiveness of those cells. Inhibition of c-Src activity resulted in the complete abolition of MIC-1-induced phosphorylation of the EGFR, ErbB2, and ErbB3, as well as invasiveness and matrix metalloproteinase (MMP)-9 expression in SK-BR-3 cells. Collectively, these results show that MIC-1 may participate in the malignant progression of certain cancer cells through the activation of c-Src, which in turn may transactivate ErbB-family receptors.

Functional Roles of the Aromatic Residues in the Stabilization of the [$Fe_4S_4$] Cluster in the Iro Protein from Acidithiobacillus ferrooxidans

  • Zeng, Jia;Liu, Qing;Zhang, Xiaojian;Mo, Hongyu;Wang, Yiping;Chen, Qian;Liu, Yuandong
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권2호
    • /
    • pp.294-300
    • /
    • 2010
  • The Iro protein is a member of the HiPIP family with the [$Fe_4S_4$] cluster for electron transfer. Many reports proposed that the conserved aromatic residues might be responsible for the stability of the iron-sulfur cluster in HiPIP. In this study, Tyr10 was found to be a critical residue for the stability of the [$Fe_4S_4$] cluster, according to site-directed mutagenesis results. Tyr10, Phe26, and Phe48 were essential for the stability of the [$Fe_4S_4$] cluster under acidic condition. Trp44 was not involved in the stability of the [$Fe_4S_4$] cluster. Molecular structure modeling for the mutant Tyr10 proteins revealed that the aromatic group of Tyr10 may form a hydrophobic barrier to protect the [$Fe_4S_4$] cluster from solvent.

Mutational Analysis of Two Conserved Active Site Tyrosine Residues in Matrilysin

  • Jaeho Cha
    • Journal of Life Science
    • /
    • 제9권2호
    • /
    • pp.44-48
    • /
    • 1999
  • The ionization of tyrosine residue is known to be involved in the stabilization of transition-state in catalysis of astacin based upon the astacin-transition state analog structure. Two tyrosine residues, Tyr-216 and Tyr-219, are conserved in all MMPs related with astacin family, We replaced Tyr-216 and Tyr-219 into phenylalanine, respectively and the zinc binding properties, kinetic parameters, and pH dependence of each mutant are determined in order to examine the role of tyrosine residue in matrilysin catalysis. Both mutants contain two zinc atoms per mol of enzyme, indicating that either tyrosime does not affect the zinc binding property of the enzyme. Y216F and Y219F mutants are highly active and the kcat/Km values are only decreased 1.1-1.5-fold compared to the wild-type enzyme. The decrease in the activity of the mutants is essentially due to the increase in Km value. The pH dependencies of the kcat/Km values for both mutants are similar to the corresponding dependencies obtained with the wild type enzyme. The pKa values at the alkaline side of both mutants are not changed. These kinetic and pH dependence results indicate that the ionization of active site tyrosine residue of matrilysin is not reflected in the kinetics of peptide hydrolysin as catalyzed by astacin.

Klebsiella pneumoniae에서 트립토판 생산증대를 위한 숙주개발 및 재조합 trp plasmid의 발현 (Modigication of host cells and Expression of Recombinant E. coli trp plasmids for the increased Production of Tryptophan in Klebsiella pneumoniae)

  • 지연태;홍광원;박장현;이세영
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.46-51
    • /
    • 1987
  • In order to increase the production of tryptophan by maximizing expression of recombinant trp plasmid, Klebsiella pneumoniae KC 105(pheA tyrA trpE trpR tyrR) was genetically modified. KC 107, inosine monophospate(IMP) auxotroph from KC 105 and KC 108, histidine(His) auxotroph from KC 107 were also derived respectively to increase phosphoribosylpyrophosphate(PRPP) production which is required for tryptophan biosynthesis. From KC 107 phosphoribosylpyrophosphate consumption which is required for tryptophan biosynthesis. From KC 107 and KC 108, KC 109 and KC 110, both arginine auxotrophs were derived respectively. To investigate the expression of recombinant trp plasmid in the selected K. pneumoniae mutants, the auxotrophic mutants were transformed with recombinant trp plasmids pSC 101-$trpE^{FBR}$, pSC 101-trpL(.DELTA.att) $trpE^{FBR}$ (pSC 101-trp-AF). Amount of tryptophan produced and activities of tryptophan synthase of $trpR^{-}$ mutant (KC 100) and $tyrR^{-}$ mutnat(KC 105) containing recombinant plasmid pSC 101-trp operon were increased by 30-40% as compared with KC 99(pheA tyrA trpE) containing recombinant plasmid pSC 101-trp operon. Activities of tryptophan synthase and production of tryptophan of KC 108 ($His^{-}$) and KC 109($Arg^{-}$) containing recombinant plasmid pSC 101-trp operon were increase by two-fold as compared with KC 107 containing pSC 101-trp operon.

  • PDF

Site-directed Mutagenesis of the Evolutionarily Conserved Tyr8 Residue in Rice Phi-class Glutathione S-transferase F3

  • Jo, Hyun-Joo;Pack, Mi-Jin;Seo, Jin-Young;Lim, Jin-Kyung;Kong, Kwang-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2671-2674
    • /
    • 2013
  • To elucidate the role of the evolutionarily conserved Tyr8 residue in rice Phi-class GSTF3, this amino acid was replaced with alanine and phenylalanine by site-directed mutagenesis, respectively. The replacement of Tyr8 with Ala significantly affected the catalytic activity and the kinetic parameters, whereas the substitutions of Tyr8 with Phe had almost no effect. The Y8A mutant resulted in approximately 90-100% decrease of the specific activity. Moreover, the Y8A mutant resulted approximately in 2-fold increase of $K_m$, approximately 60-80% decrease of $k_{cat}$, and approximately 6.5-fold decrease in $k_{cat}/K_m$. From the pH/log $k_{cat}/K_m$ plot, $pK_a$ values of the GSH in the wild-type enzyme-GSH complex, Y8A-GSH complex and Y8F-GSH complex were estimated to be approximately 6.8, 8.5 and 6.9, respectively. From these results, we suggest that the evolutionarily conserved Tyr8 residue in OsGSTF3 seems to influence the structural stability of the active site of OsGSTF3 rather than directly its catalytic activity.

Aromaticity of Tyr-202 in the α4-α5 Loop Is Essential for Toxicity of the Bacillus thuringiensis Cry4A Toxin

  • Pornwiroon, Walairat;Katzenmeier, Gerd;Panyim, Sakol;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.292-297
    • /
    • 2004
  • The current model for the mechanism of action of the Bacillus thuringiensis Cry $\delta$-endotoxins involves the penetration of the ${\alpha}4-{\alpha}5$ hairpin into the target midgut epithelial cell membranes, followed by pore formation. In this study, PCR-based mutagenesis was employed to identify a critical residue within the ${\alpha}4-{\alpha}5$ loop of the 130-kDa Cry4A mosquito-larvicidal protein. Alanine-substitutions of two charged (Asp-198 and Asp-200) and four polar (Asn-190, Asn-195, Tyr-201 and Tyr-202) residues in the ${\alpha}4-{\alpha}5$ loop were performed. Like the wild-type, all of the mutant toxins were over-expressed as inclusion bodies in Escherichia coli. When E. coli cells expressing each mutant toxin were bioassayed against Aedes aegypti larvae, larvicidal activity was completely abolished for the substitution of only Tyr-202, while replacements at the other positions still retained a high level of toxicity. Further replacement of Tyr-202 with an aromatic side chain, phenylalanine, did not affect the toxicity. These results revealed a crucial role in toxin activity for the conserved aromatic residue at the 202 position within the ${\alpha}4-{\alpha}5$ loop of the Cry4A toxin.

Roles of the Residues Lys115 and Tyr116 in the Binding of an Allosteric Inhibitor AMP to Pea Cytosolic Fructose-1,6-bisphosphatase

  • Jang, Hye-Kyung;Cho, Man-Ho;Kwon, Yong-Kook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • Journal of Applied Biological Chemistry
    • /
    • 제51권2호
    • /
    • pp.45-49
    • /
    • 2008
  • Cytosolic fructose-1,6-bisphosphatase (cFBPase) in plants is a key regulatory enzyme in the photosynthetic sucrose biosynthesis. Plant cFBPases, like the mammalian FBPases, are inhibited by adenosine 5'-monophosphate (AMP) and fructose-2,6-bisphosphate (Fru-2,6-$P_2$). In the mammalian FBPases, Lys112 and Tyr113 play important roles in the AMP binding. To understand roles of the corresponding residues, Lys115 and Tyr116, in pea cFBPase, the mutant cFBPases were generated by site-directed mutagenesis. The alterations of Lys115 to Gin and Tyr116 to Phe displayed small changes in $K_m$ and $K_i$ for Fru-2,6-$P_2$, indicating that the mutation causes minor effects on the enzyme catalysis and Fru-2,6-$P_2$ binding, whereas resulted in higher than 500-fold increase of $[AMP]_{0.5}$ compared with that of the wild-type enzyme. Results indicate the residues Lys115 and Tyr116 play important roles in the binding of AMP to the allosteric site of the pea cFBPase.