DOI QR코드

DOI QR Code

Aromaticity of Tyr-202 in the α4-α5 Loop Is Essential for Toxicity of the Bacillus thuringiensis Cry4A Toxin

  • Pornwiroon, Walairat (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Katzenmeier, Gerd (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Panyim, Sakol (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus) ;
  • Angsuthanasombat, Chanan (Laboratory of Molecular Biophysics, Institute of Molecular Biology and Genetics, Mahidol University, Salaya Campus)
  • Published : 2004.05.31

Abstract

The current model for the mechanism of action of the Bacillus thuringiensis Cry $\delta$-endotoxins involves the penetration of the ${\alpha}4-{\alpha}5$ hairpin into the target midgut epithelial cell membranes, followed by pore formation. In this study, PCR-based mutagenesis was employed to identify a critical residue within the ${\alpha}4-{\alpha}5$ loop of the 130-kDa Cry4A mosquito-larvicidal protein. Alanine-substitutions of two charged (Asp-198 and Asp-200) and four polar (Asn-190, Asn-195, Tyr-201 and Tyr-202) residues in the ${\alpha}4-{\alpha}5$ loop were performed. Like the wild-type, all of the mutant toxins were over-expressed as inclusion bodies in Escherichia coli. When E. coli cells expressing each mutant toxin were bioassayed against Aedes aegypti larvae, larvicidal activity was completely abolished for the substitution of only Tyr-202, while replacements at the other positions still retained a high level of toxicity. Further replacement of Tyr-202 with an aromatic side chain, phenylalanine, did not affect the toxicity. These results revealed a crucial role in toxin activity for the conserved aromatic residue at the 202 position within the ${\alpha}4-{\alpha}5$ loop of the Cry4A toxin.

Keywords

References

  1. Angsuthanasombat, C., Chungjatupornchai, W., Kertbundit, S., Luxananil, P., Settasatian, C., Wilairat, P. and Panyim, S. (1987) Cloning and expression of 130-kDa mosquito-larvicidal $\delta$-endotoxin gene of Bacillus thuringiensis var israelensis in Escherichia coli. Mol. Gen. Genet. 208, 384-389. https://doi.org/10.1007/BF00328128
  2. Angsuthanasombat, C., Crickmore, N. and Ellar, D. J. (1992) Comparison of Bacillus thuringiensis subsp. israelensis CryIVA and CryIVB cloned toxins reveals synergism in vivo. FEMS Microbiol. Lett. 94, 63-68. https://doi.org/10.1111/j.1574-6968.1992.tb05290.x
  3. Angsuthanasombat, C., Uawithya, P., Leetachewa, S., Pornwiroon, W., Ounjai, P., Kerdcharoen, T., Katzenmeier, G. and Panyim, S. (2004) Bacillus thuringiensis Cry4A and Cry4B mosquitolarvicidal proteins: homology-based 3D model and implications for toxin activity. J. Biochem. Mol. Biol. 37, 304-313. https://doi.org/10.5483/BMBRep.2004.37.3.304
  4. Aronson, A. I., Beckman, W. and Dunn, P. (1986) Bacillus thuringiensis and related insect pathogens. Microbiol. Rev. 50, 1-24.
  5. Buttcher, V., Ruhlmann, A. and Cramer, F. (1990) Improved single-stranded DNA producing expression vectors for protein manipulation in Escherichia coli. Nucleic Acids Res. 18, 1075. https://doi.org/10.1093/nar/18.4.1075
  6. Crickmore, N., Zeigler, D. R., Feitelson, J., Schnepf, E., Van Rie, J., Lereclus, D., Baum, J. and Dean, D. H. (1998) Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 807-813.
  7. Galitsky, N., Cody, V., Wojtczak, A., Ghosh, D., Luft, J. R., Pangborn, W. and English, L. (2001) Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D. Biol. Crystallogr. 57, 1101-1109. https://doi.org/10.1107/S0907444901008186
  8. Gerber, D. and Shai, Y. (2000) Insertion and organization within membranes of the delta-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem. 275, 23602-23607. https://doi.org/10.1074/jbc.M002596200
  9. Grochulski, P., Masson, L., Borisova, S., Pusztai-Carey, M., Schwartz, J.-L., Brousseau, R. and Cygler, M. (1995) Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J. Mol. Biol. 254, 447-464. https://doi.org/10.1006/jmbi.1995.0630
  10. Hofte, H. and Whiteley, H. R. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53, 242-255.
  11. Kanintronkul, Y., Sramala, I., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2003) Specific mutations within the $\alpha$4-$\alpha$5 loop of the Bacillus thuringiensis Cry4B toxin reveal a crucial role of Asn-166 and Tyr-170. Mol. Biotechnol. 24, 11-19. https://doi.org/10.1385/MB:24:1:11
  12. Killian, J. A. and Von Heijne, G. (2000) How proteins adapt to membrane-water interface. Trends Biochem. Sci. 25, 429-434. https://doi.org/10.1016/S0968-0004(00)01626-1
  13. Knowles, B. H. and Ellar, D. J. (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta endotoxin with difference insect specificity. Biochim. Biophys. Acta 924, 509-518. https://doi.org/10.1016/0304-4165(87)90167-X
  14. Li, J., Carroll, J. and Ellar, D. J. (1991) Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 ${\AA}$ resolution. Nature 353, 815-821. https://doi.org/10.1038/353815a0
  15. Masson, L., Tabashnik, B. E., Liu, Y. B., Brousseau, R. and Schwartz, J.-L. (1999) Helix 4 of the Bacillus thuringiensis Cry1Aa toxin lines the lumen of the ion channel. J. Biol. Chem. 274, 31996-32000. https://doi.org/10.1074/jbc.274.45.31996
  16. Morse, R. J., Yamamoto, T. and Stroud, R. M. (2001) Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb.) 9, 409-417. https://doi.org/10.1016/S0969-2126(01)00601-3
  17. Nunez-Valdez, M.-E., Sanchez, J., Lina, L., Guereca, L. and Bravo, A. (2001) Structural and functional studies of $\alpha$-helix 5 region from Bacillus thuringiensis Cry1Ab $\delta$-endotoxins. Biochimi. Biophys. Acta 1546, 122-133. https://doi.org/10.1016/S0167-4838(01)00132-7
  18. Pawagi, A. B. and Deber, C. M. (1990) Ligand-dependent quenching of tryptophan fluorescence in human erythrocyte hexose transport protein. Biochemistry 29, 950-955. https://doi.org/10.1021/bi00456a015
  19. Puntheeranurak, T., Leetachewa, S., Katzenmeier, G., Krittanai, C., Panyim, S. and Angsuthanasombat, C. (2001) Expression and biochemical characterization of the Bacillus thuringiensis Cry4B $\alpha$1-$\alpha$5 pore-forming fragment. J. Biochem. Mol. Biol. 34, 293-298.
  20. Puntheranurak, T., Uawithya, P., Potvin, L., Angsuthanasombat, C., and Schwartz, J.-L. (2004) Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its $\alpha$1-$\alpha$5 fragment. Mol. Membr. Biol. 21, 67-74. https://doi.org/10.1080/09687680310001625792
  21. Schiffer, M., Chang, C. H. and Stevens, F. J. (1992) The functions of tryptophan residues in membrane proteins. Protein Eng. 5, 213-214. https://doi.org/10.1093/protein/5.3.213
  22. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62, 775-806.
  23. Schwartz, J.-L., Juteau, M., Grochulski, P., Cygler, M., Prefontaine, G., Brousseau, R. and Masson, L. (1997) Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 410, 397-402. https://doi.org/10.1016/S0014-5793(97)00626-1
  24. Sramala, I., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2001) Charged residues screening in helix 4 of the Bacillus thuringiensis Cry4B toxin reveals one critical residue for larvicidal activity. J. Biochem. Mol. Biol. Biophys. 5, 219-225.
  25. Sramala, I., Uawithya, P., Chanama, U., Leetachewa, S., Krittanai, C., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (2000) Single proline substitutions of selected helices of the Bacillus thuringiensis Cry4B toxin affect inclusion solubility and larvicidal activity. J. Biochem. Mol. Biol. Biophys. 4, 187-193.
  26. Tsang, S. and Saier, M. H., Jr. (1996) A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: application to the distribution of aromatic versus aliphatic hydrophobic amino acids in transmembrane alpha-helical spanners of integral membrane transport proteins. J. Comput. Biol. 3, 185-190. https://doi.org/10.1089/cmb.1996.3.185
  27. Uawithya, P., Tuntitippawan, T., Katzenmeier, G., Panyim, S. and Angsuthanasombat, C. (1998) Effects on larvicidal activity of single proline substitutions in alpha 3 or alpha 4 of the Bacillus thuringiensis Cry4B toxin. Biochem. Mol. Biol. Int. 44, 825-832.
  28. Ulmschneider, M. B. and Sansom, M. S. P. (2001) Amino acid distributions in integral membrane protein structures. Biochimi. Biophys. Acta 1512, 1-14. https://doi.org/10.1016/S0005-2736(01)00299-1
  29. Von Tersch, M. A., Slatin, S. L., Kulesza, C. A. and English, L. H. (1994) Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl. Environ. Microbiol. 60, 3711-3717.
  30. Walters, F. S., Slatin, S. L., Kulesza, C. A. and English, L. H. (1993) Ion channel activity of N-terminal fragments from CryIA(c) delta-endotoxin. Biochem. Biophys. Res. Commun. 196, 921-926. https://doi.org/10.1006/bbrc.1993.2337
  31. Yau, W. M., Wimley, W. C., Gawrisch, K. and White, S. H. (1998) The preference of tryptophan for membrane interfaces. Biochemistry 37, 14713-14718. https://doi.org/10.1021/bi980809c

Cited by

  1. Asn183 in α5 is essential for oligomerisation and toxicity of the Bacillus thuringiensis Cry4Ba toxin vol.445, pp.1, 2006, https://doi.org/10.1016/j.abb.2005.11.007
  2. Structural requirements of the unique disulphide bond and the proline-rich motif within the α4–α5 loop for larvicidal activity of the Bacillus thuringiensis Cry4Aa δ-endotoxin vol.330, pp.2, 2005, https://doi.org/10.1016/j.bbrc.2005.03.006
  3. Lipid-induced conformation of helix 7 from the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for toxicity mechanism vol.482, pp.1-2, 2009, https://doi.org/10.1016/j.abb.2008.11.025
  4. Effects of Mutations Within Surface-Exposed Loops in the Pore-Forming Domain of the Cry9Ca Insecticidal Toxin of Bacillus thuringiensis vol.238, pp.1-3, 2010, https://doi.org/10.1007/s00232-010-9315-9
  5. Cloning and Characterization of a Novel Crystal Protein from a Native Bacillus thuringiensis Isolate Highly Active Against Aedes aegypti vol.54, pp.4, 2007, https://doi.org/10.1007/s00284-006-0299-8
  6. Bacillus thuringiensis Cry4Aa insecticidal protein: Functional importance of the intrinsic stability of the unique α4–α5 loop comprising the Pro-rich sequence vol.1844, pp.6, 2014, https://doi.org/10.1016/j.bbapap.2014.03.003
  7. Importance of polarity of the α4–α5 loop residue—Asn166 in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: Implications for ion permeation and pore opening vol.1838, pp.1, 2014, https://doi.org/10.1016/j.bbamem.2013.10.002
  8. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins vol.6, pp.9, 2014, https://doi.org/10.3390/toxins6092732
  9. Chemical modification of Bacillus thuringiensis Cry1Aa toxin single-cysteine mutants reveals the importance of domain I structural elements in the mechanism of pore formation vol.1788, pp.2, 2009, https://doi.org/10.1016/j.bbamem.2008.11.001