Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.9.2671

Site-directed Mutagenesis of the Evolutionarily Conserved Tyr8 Residue in Rice Phi-class Glutathione S-transferase F3  

Jo, Hyun-Joo (Biomolecular Chemistry Laboratory, Department of Chemistry, College of Sciences, Chung-Ang University)
Pack, Mi-Jin (Biomolecular Chemistry Laboratory, Department of Chemistry, College of Sciences, Chung-Ang University)
Seo, Jin-Young (Biomolecular Chemistry Laboratory, Department of Chemistry, College of Sciences, Chung-Ang University)
Lim, Jin-Kyung (Biomolecular Chemistry Laboratory, Department of Chemistry, College of Sciences, Chung-Ang University)
Kong, Kwang-Hoon (Biomolecular Chemistry Laboratory, Department of Chemistry, College of Sciences, Chung-Ang University)
Publication Information
Abstract
To elucidate the role of the evolutionarily conserved Tyr8 residue in rice Phi-class GSTF3, this amino acid was replaced with alanine and phenylalanine by site-directed mutagenesis, respectively. The replacement of Tyr8 with Ala significantly affected the catalytic activity and the kinetic parameters, whereas the substitutions of Tyr8 with Phe had almost no effect. The Y8A mutant resulted in approximately 90-100% decrease of the specific activity. Moreover, the Y8A mutant resulted approximately in 2-fold increase of $K_m$, approximately 60-80% decrease of $k_{cat}$, and approximately 6.5-fold decrease in $k_{cat}/K_m$. From the pH/log $k_{cat}/K_m$ plot, $pK_a$ values of the GSH in the wild-type enzyme-GSH complex, Y8A-GSH complex and Y8F-GSH complex were estimated to be approximately 6.8, 8.5 and 6.9, respectively. From these results, we suggest that the evolutionarily conserved Tyr8 residue in OsGSTF3 seems to influence the structural stability of the active site of OsGSTF3 rather than directly its catalytic activity.
Keywords
Tyrosine 8 residue; Rice; Glutathione S-transferase; Site-directed mutagenesis; Kinetic parameters;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Flohe, L.; Gunzler, W. A. Methods Enzymol. 1984, 105, 114.   DOI   ScienceOn
2 Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 184, 194.   DOI   ScienceOn
3 Kong, K.-H.; Nishida, M.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 182, 1122.   DOI   ScienceOn
4 Barycki, J. J.; Colman, R. F. Biochemistry 1993, 32, 13002.   DOI   ScienceOn
5 Cummins, I.; Dixon, D. P.; Freitag-Pohl, S.; Skipsey, M.; Edwards, R. Drug Metab. Rev. 2011, 43, 266.   DOI   ScienceOn
6 Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357.
7 Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988, 23, 283.   DOI
8 Dixon, D. P.; Cole, D. J.; Edwards, R. Plant Mol. Biol. 1998, 36, 75.   DOI   ScienceOn
9 Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol. 1991, 64, 1.
10 Dixon, D. P.; Lapthorne, A.; Edwards, R. Genome Biol. 2002, 3, 3004.1.
11 Dixon, D. P.; Davies, B. G.; Edwards, R. J. Biol. Chem. 2002, 277, 30859.   DOI   ScienceOn
12 Edwards, R.; Dixon, D. P.; Walbot, V. Trends Plant Sci. 2000, 5,193.   DOI   ScienceOn
13 Droog, F. J. Palt Growth Regul. 1997, 16, 95.   DOI   ScienceOn
14 Board, P. G.; Menon, D. Biochim. Biophys. Acta 2013, 1830, 3267.   DOI   ScienceOn
15 Cho, H.-Y.; Kong, K.-H. Pestic. Biochem. Phys. 2005, 83, 29.   DOI   ScienceOn
16 Yoon, S.-Y.; Kong, J.-N.; Jo, D.-H.; Kong, K.-H. Food Chem. 2011, 129, 1327.   DOI   ScienceOn
17 Jo, H.-J.; Lee, J.-W.; Noh, J.-S.; Kong, K.-H. Bull. Korean Chem. Soc. 2012, 33, 4169.   DOI   ScienceOn
18 Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398.   DOI   ScienceOn