• 제목/요약/키워드: TVD Method

검색결과 91건 처리시간 0.025초

압축성 유동 해석 프로그램 개발을 통한 Eckardt 임펠러의 성능 예측 (Performance Prediction of Eckardt's Impeller based on The Development of compressible Navier-Stokes Solver)

  • 곽승철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.223-232
    • /
    • 1998
  • To investigate the flow inside the centrifugal impeller, computer program which can solve Three-dimensional compressible turbulent flow has been developed. The Navier-Stokes equations were chosen as the governing equation for viscous flow while Euler equations for inviscid case. Time marching method was incorporated with the Flux Difference Splitting method suggested by Roe to capture the steep gradients such as a shock. For high order of accuracy, MUSCL approach was adopted while differentiable limiter to ensure TVD property. For turbulence closure, Baldwin- Lomax model was applied due to its simplicity. To demonstrate the capabilities of present program, several validation problems have been solved and compared with experiments and other available data. From the above calculations generally good agreements were obtained. Finally, the developed code was applied to Eckardt's impeller and the performance prediction was carried out. Some important aspects on boundary condition for successful simulation were discussed and the remedy was also introduced.

  • PDF

비정렬격자 다차원 FVM유동계산 (Multi-dimensional Finite-Volume Flow Computation Using Unstructured Grid)

  • 김종환;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.182-187
    • /
    • 1995
  • The present paper explains some advancement made by the authors for the compressible flow computation of the Euler equations based on the unstructured grid and vertex- centered finite volume method. Accurate solutions to the unsteady axisymmetric shock wave propagation problems and three-dimensional airplane flows have been obtained by a high-order upwind TVD and FCT schemes. Unstructured grid adaption is made for the unsteady shock wave problems by the dynamic h-refinement/unrefinement procedure and for the three-dimensional steady flows by the Delaunay point-insertion method to generate three-dimensional tetrahedral mesh enrichment. Some physics of the shock wave diffraction phenomena and three-dimensional airplane flow are discussed.

  • PDF

분할격자를 이용한 댐붕괴파의 수치해석 (Numerical Simulation of Dam-Break Problem with Cut-cell Method)

  • 김형준;유제선;이승오;조용식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Design Study of a Small Scale Soft Recovery System

  • Yoo, Il-Yong;Lee, Seung-Soo;Cho, Chong-Du
    • Journal of Mechanical Science and Technology
    • /
    • 제20권11호
    • /
    • pp.1961-1971
    • /
    • 2006
  • A soft recovery system (SRS) is a device that stops a high speed projectile without damaging the projectile. The SRS is necessary to verify the shock resistant requirements of microelectronics and electro-optic sensors in smart munitions, where the projectiles experience over 20,000 g acceleration inside the barrel. In this study, a computer code for the performance evaluation of a SRS based on ballistic compression decelerator concept has been developed. It consists of a time accurate compressible one-dimensional Euler code with use of deforming grid and a projectile motion analysis code. The Euler code employs Roe's approximate Riemann solver with a total variation diminishing (TVD) method. A fully implicit dual time stepping method is used to advance the solution in time. In addition, the geometric conservation law (GCL) is applied to predict the solutions accurately on the deforming mesh. The equation of motion for the projectile is solved with the four-stage Runge-Kutta time integration method. A small scale SRS to catch a 20 mm bullet fired at 500 m/s within 1,600 g-limit has been designed with the proposed method.

와도를 기저로 한 비압축성 점성유동해석 방법 (A Vorticity-Based Method for Incompressible Viscous Flow Analysis)

  • 서정천
    • 한국전산유체공학회지
    • /
    • 제3권1호
    • /
    • pp.11-21
    • /
    • 1998
  • A vorticity-based method for the numerical solution of the two-dimensional incompressible Navier-Stokes equations is presented. The governing equations for vorticity, velocity and pressure variables are expressed in an integro-differential form. The global coupling between the vorticity and the pressure boundary conditions is fully considered in an iterative procedure when numerical schemes are employed. The finite volume method of the second order TVD scheme is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition. The velocity field is obtained by using the Biot-Savart integral. The Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well established for potential flow analysis. The present formulation is validated by comparison with data from the literature for the two-dimensional cavity flow driven by shear in a square cavity. We take two types of the cavity now: (ⅰ) driven by non-uniform shear on top lid and body forces for which the exact solution exists, and (ⅱ) driven only by uniform shear (of the classical type).

  • PDF

초음속 부족팽창 제트유동에 관한 해석적 연구 (An Analytical Study on Supersonic Under-Expanded Jet)

  • 김희동;이호준;김윤곤
    • 한국추진공학회지
    • /
    • 제1권1호
    • /
    • pp.46-54
    • /
    • 1997
  • 본 연구에서는 공업적으로 널리 활용되고 있는 초음속 부족팽창 제트유동을 용이하게 예측하기 위하여, 종래의 수치계산 결과를 이용, 축대칭 및 2차원 초음속 부족팽창 제트유동에 대한 스케일링 식을 제안하였다. 본 연구에서 제안된 축대칭 및 2차원 제트유동에 관한 경험식들은 TVD수치계산 결과와 잘 일치하였으며, 노즐의 작동압력비가 주어지는 경우, 초음속 부족팽창 제트유동의 형태는 스케일링 식들에 의하여 잘 예측할 수 있었다.

  • PDF

Morphological Transformation of Shock Waves Behind a Flat Plate

  • Chang, Se-Nyong;Lee, Soogab;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • 제15권5호
    • /
    • pp.665-670
    • /
    • 2001
  • The interaction of a travelling shock with the shear layer of a flat plate is studied computationally. The Euler and Navier-Stokes equations are solved numerically on quadrilateral unstructured adaptive grids. The flat plate is installed horizontally on the central axis of a shock tube. The shear layer is first created by two shock waves at different speeds splitted by a flat plate. A series of small vortices is developed as a consequence in the shear layer. The shock wave reflected at the end wall impinges the shear layer. The complicated shock dynamics in the evolution to the pseudo-steady state is represented with the morphological transformation of a planar shock into an oblique shock.

  • PDF

NUMERICAL ANALYSIS OF INTERACTION BETWEEN SUPERSONIC JET AND PERPENDICULAR PLATE

  • Yasunobu T;Matsuoka T;Kashimura H;Setoguchi T
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.39-44
    • /
    • 2005
  • The numerical investigation of the interaction between the underexpanded supersonic jet and the perpendicular plate is carried out using the TVD numerical method. The wave structure in the flowfield and the pressure and temperature distributions on the plate surface are obtained by the numerical analysis. Especially, the influence of self-induced flow oscillation caused by the impinging jet and the characteristic of impinging jet are shown. From the result of the numerical analysis, it is concluded that the pressure and the temperature fluctuations on the plate surface strongly depends on the pressure ratio in the flowfield and the position of plate.

병렬 처리를 이용한 3차원 데토네이션 파 구조 해석 (STUDY OF THREE-DIMENSIONAL DETONATION WAVE STRUCTURES USING PARALLEL PROCESSING)

  • 조덕래;최정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.151-155
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

압축성 Navier-Stokes 방정식을 이용한 가스 분무기 유동의 수치적 해석 (Numerical Analysis of Gas Atomizer Flow using the Compressible Navier-Stokes Equations)

  • 윤병국
    • 한국분말재료학회지
    • /
    • 제2권2호
    • /
    • pp.120-134
    • /
    • 1995
  • The behavior of the flow about gas atomizers with a supersonic nozzle containing an under-expanded or over-expanded jet is very important with respect to performance and stability characteristics. Since detailed experiments are expensive, computational fluid mechanics have been applied recently to various relating flow field. In this study, a higher order upwind method with the 3rd order MUSCL type TVD scheme is used to solve the full Reynolds Wavier-Stokes equations. To delineate the purely exhaust jet effects, the melt flow is not considered. Comparison is made with some experimental data in terms of density fields. The influence of the exhaust-jet-to freestream pressure ratio and the effect of the protrusion length of the melt orifice are studied. The present study leads us to believe that the computational fluid mechanics should be considered as powerful tool in predicting the gas atomizer flows.

  • PDF