• Title/Summary/Keyword: TUNNEL CONSTRUCTION

Search Result 1,863, Processing Time 0.027 seconds

CONSTRUCTION MANAGEMENT OF TUNNELLING IN SEVERE GROUNDWATER CONDITION

  • Young Nam Lee;Dae Young Kim
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.655-661
    • /
    • 2005
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3 km upstream of the powerhouse and headrace tunnel of 20 km in length and penstock of 440 m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site; the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20 bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflow raised the water level inside tunnel to 70 cm, 17% of tunnel diameter (3.9 m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made for the excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Failure Mechanism of NATM tunneling using Computational Methods and Geology Investigation (수치해석수법과 지질공학적 분석을 통한 NATM터널의 붕괴메커니즘에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Choi, Hea-Jun;Jeong, Yun-Young;Jin, Guang-Ri;Rim, Hong-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.742-753
    • /
    • 2008
  • Currently an increasing number of urban tunnels with small overburden are excavated according to the principle of the New Austrian Tunneling Method (NATM). Therefore, a possibility of a tunnel collapse during excavation is getting higher in a proportionate manner. This paper will analyze causes the failure mechanism of a shallow NATM tunnel for different geological conditions, ground-water and invert solutions by investigation typical collapse site during tunnel construction. In this paper, this analysis performed two phase, firstly, the field investigation considering displacement measurement, ground-water level, geological characteristic, secondly, the numerical simulation considering the exist of invert construction and the effect of ground-water. It has been found that environmental factors such as state of underground water or construction sequences could influence failure mechanism of a shallow tunnel.

  • PDF

Design guide for full-face blasting in highway tunnel (고속도로 터널에 대한 전단면 발파 설계방안 연구)

  • Lee, Sang-Don;Choi, Hae-Moon;Lee, Hyun-Koo;Ryu, Chang-Ha
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.930-937
    • /
    • 2004
  • In tunnel blasting, rock damage and overbreak at excavation limits are strongly related to stability of the tunnel and cost for rock support, and also affect to maintenance after tunnel construction. In this study, many field tests and measurements have been carried out in highway tunnels so that discordance between blast design and practical production blasting could be settled and actual methods of over break control could be proposed through the understanding of the problems in existing blasting patterns. Test blasting in tunnel was carried out many times in two tunnel sites. Also, long hole blasting longer than existing blasting pattern was executed for good grade of rock mass whose RMR value is more than 60. Using the results of test blasting, new standard blasting patterns for two lane tunnel were proposed. As a result of profile measurement after blasting, drilling is a major factor of overbreak. And then the methods for minimizing overbreak were adapted in new blasting patterns.

  • PDF

Design and construction of the GK immersed tunnel of Busan-Geoje Fixed Link Project (국내 최장 GK 침매터널의 설계 및 시공)

  • Kim, Yong-Il;Kim, Woong-Ku;Kim, Je-Chun;Lee, Jung-Sang;Kim, Kyoung-O
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.71-76
    • /
    • 2009
  • The GK immersed tunnel as a part of Busan-Geoje Fixed Link Project, is the first attempt in Korea. In spite of existing of many difficulties in construction like the absent of construction cases in Korea, the connection work under approximately 50 m below sea level and weak ground condition, etc., now eight caissons were installed successfully on the accurate position and we are going to install upto the twelfth caisson in this year. The purpose of this paper is to introduce design and construction conditions of the GK immersed tunnel to advise the tunnel designers who will handle the similar project.

Development of the Fuzzy Expert System for the Reinforcement of Tunels during Construction (터널 시공 중 보강공법 선전용 퍼지 전문가 시스템 개발)

  • 김창용;박치현;배규진;홍성완;오명렬
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.127-139
    • /
    • 2000
  • In the study, an expert system was developed to predict the safety of tunnel and select proper tunnel reinforcement system using fuzzy quantification theory and fuzzy inference rule based on tunnel information database, For this development, many tunnelling sites were investigated and the applied countermeasures were studied after building tunnel database. There will be benefit for the deciding tunnel reinforcement method in the case of poor ground condition. The expert system developed in the study has two main parts, pre-module and post-module. Pre-module is used to decide input items of tunnel information based on the tunnel face mapping information which can be easily obtained in in-situ site. Then, using fuzzy quantification theory II, fuzzy membership function is composed and tunnel safety level is inferred through this membership function. Post-module is used to infer the applicability of each reinforcement methods according to the face level. The result of the predicted reinforcement system level was similar to measured ones. In-situ data were obtained in three tunnel sites including subway tunnel under Han River. Therefore, this system will be helpful to make the mose of in-situ data available and suggest proper applicability of tunnel reinforcement system to development more resonable tunnel support method without dependance of some experienced experts opinions.

  • PDF

2-Dimensional Numerical Analysis of Crossing Tunnel under Railroad using Roof Panel Shield Method (RPS공법을 이용한 철도횡단터널의 2차원수치해석)

  • Shin, Eun-Chul;Roh, Jeong-Min;Lee, Eun-Soo;Kim, Kyeong-Mo;Kim, Jung-Hyi;Jung, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.591-600
    • /
    • 2005
  • There are many cross tunnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(roof panel shield) method in crossing tunnel construction with comparing other existing cross tunnelling method are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

  • PDF

A case histories on the detection of weak zone using electrical resistivity and EM surveys in planned tunnel construction site (터널 건설 예정지구에서의 전기비저항 탐사와 전자탐사의 적용을 통한 연약대 탐지에 대한 사례 연구)

  • 권형석;송윤호;이명종;정호준;오세영;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.63-70
    • /
    • 2002
  • In tunnel construction, the information on the rock quality and the location of fault or fracture are crucial for economical design of support pattern and for safe construction of the tunnel. The grade of rock is commonly estimated through the observation with the naked eye of recovered cores in drilling or from physical parameters obtained by their laboratory test. Since drilling cost is quite expensive and terrains of planned sites for tunnel construction are rough in many cases, however, only limited information could be provided by core drilling Electrical resistivity and EM surveys may be a clue to get over this difficulty. Thus we have investigated electrical resistivity and EM field data providing regional Information of the rock Quality and delineating fault and fracture over a rough terrain. In this paper, we present some case histories using electrical resistivity and EM survey for the site investigation of tunnel construction. Through electrical resistivity and EM survey, the range and depth of coal seam was clearly estimated, cavities were detected in limestone area, and weak zones such as joint, fault and fracture have been delineated.

  • PDF

3D Visualization Technique Based Tunnel Design (3차원 가시화 기법을 이용한 터널설계)

  • 홍성완;배규진;김창용;서용석;김광염
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.759-766
    • /
    • 2002
  • In the paper the authors describe the development of ITIS(Intelligent Tunneling Information System) for the Purpose of applying the 3D visualization technique, GIS, AI(Artificial Intelligence) to tunnel design and construction. VR(Virtual Reality) and 3D visualization techniques are applied in order to develope the 3D model of characteristics and structures of ground and rock mass. Database for all the materials related to site investigation and tunnel construction is developed using GIS technique. AI technique such as fuzzy theory and neural network is applied to predict ground settlement, decide tunnel support method and estimate ground and rock mass properties according to tunnel excavation steps. ITIS can help to inform various necessary tunnel information to engineers quickly and manage tunnel using acquired information based on D/B.

  • PDF

The Study On The Pre-displacement Before Face Of The Shallow Tunnel In The Weathered Soil (풍화토구간을 통과하는 천층터널의 막장선행변위에 대한 연구)

  • Kang, Suk-Ki;Yoon, Ju-Sang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.947-954
    • /
    • 2008
  • Nowadays many urban subways are frequently constructed under the building and the river by the use of tunneling method. Especially, the majority of the tunnel are constructed even with shallow depth under the ground in the weathered soil. Since the tunnel are generally designed on the basis of the geographic soil investigation, the stability of the tunnel should be checked with the realistic data instrumented during construction. The displacement of the tunnel occurs in front of the end face during the excavation of the tunnel, which is called as pre-displacement. The total displacement can be figured from the exact pre-displacement, which is very difficult to measure without using any device installed in front of the tunnel end face. In this study, the pre-displacement measured from horizontal inclinometer was analyzed to know the co-relation with the total displacement and also, the trend and the characteristics of the tunnel deformation during construction was suggested through the regression analysis of the measured data.

  • PDF

A Case Study on the Application of T.B.M Tunnelling in Hard Rock (HARD ROCK에서의 T.B.M 공법 적용사례)

  • 박용운;박홍조
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.10b
    • /
    • pp.103-118
    • /
    • 1993
  • The application of T.B.M tunnelling has been progressively increased since the first entrance into Korea in 1985 and especially, its higher performance and safety is widely proved as a generalized tunnelling in hardrock tunnel construction, comparing wi th conventional method. This case announcement will be much helpful for your general understanding of T.B.M tunnelling and the development of tunneling technology by introducing the brief methods and construction results from the actual application cases of T.B.M tunnelling in Ulsan Water Supply Tunnel Project, the longest tunnel in Korea under construction by YOU ONE. Co.

  • PDF