• Title/Summary/Keyword: TOXICITY

Search Result 7,523, Processing Time 0.038 seconds

Insect Juvenile Hormone Antagonists as Eco-friendly Insecticides (친환경 살충제로서의 곤충 유충호르몬 길항제)

  • Choi, Jae Young;Je, Yeon Ho
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.101-108
    • /
    • 2022
  • Because of their specificity to target insects and relatively low toxicity to non-target organisms, insect growth regulators (IGRs) have been regarded as attractive alternatives to chemical insecticides. Commercially available IGRs are classified into juvenile hormone agonists (JHAs), ecdysone agonists (EAs), and chitin synthesis inhibitors (CSIs) according to their mode of action. Recently, JH-mediated interaction of methoprene-tolerant (Met), which is JH receptor, and its binding partners have been replicated in vitro using yeast cells transformed with the Met and FISC/CYC genes of A. aegypti. Using this in vitro yeast two-hybrid β-galactosidase assay, juvenile hormone antagonists (JHANs) have been identified from various sources including chemical libraries, plants, and microorganisms. As juvenile hormone (JH) is an insect specific hormone and regulates development, reproduction, diapause and other physiological processes, JHANs fatally disrupt the endocrine signals, which result in abnormal development and larval death. These results suggested that JHANs could be efficiently applied as IGR insecticides with a broad insecticidal spectrum. This review discuses JH signaling pathway mediated by Met and future prospects of JHANs as environmentally benign IGR insecticides.

Ginsenoside Rb1 attenuates methamphetamine (METH)-induced neurotoxicity through the NR2B/ERK/CREB/BDNF signalings in vitro and in vivo models

  • Yang, Genmeng;Li, Juan;Peng, Yanxia;Shen, Baoyu;Li, Yuanyuan;Liu, Liu;Wang, Chan;Xu, Yue;Lin, Shucheng;Zhang, Shuwei;Tan, Yi;Zhang, Huijie;Zeng, Xiaofeng;Li, Qi;Lu, Gang
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.426-434
    • /
    • 2022
  • Aim: This study investigates the effects of ginsenoside Rb1 (GsRb1) on methamphetamine (METH)-induced toxicity in SH-SY5Y neuroblastoma cells and METH-induced conditioned place preference (CPP) in adult Sprague-Dawley rats. It also examines whether GsRb1 can regulate these effects through the NR2B/ERK/CREB/BDNF signaling pathways. Methods: SH-SY5Y cells were pretreated with GsRb1 (20 mM and 40 mM) for 1 h, followed by METH treatment (2 mM) for 24 h. Rats were treated with METH (2 mg/kg) or saline on alternating days for 10 days to allow CPP to be examined. GsRb1 (5, 10, and 20 mg/kg) was injected intraperitoneally 1 h before METH or saline. Western blot was used to examine the protein expression of NR2B, ERK, P-ERK, CREB, P-CREB, and BDNF in the SH-SY5Y cells and the rats' hippocampus, nucleus accumbens (NAc), and prefrontal cortex (PFC). Results: METH dose-dependently reduced the viability of SH-SY5Y cells. Pretreatment of cells with 40 µM of GsRb1 increased cell viability and reduced the expression of METH-induced NR2B, p-ERK, p-CREB and BDNF. GsRb1 also attenuated the expression of METH CPP in a dose-dependent manner in rats. Further, GsRb1 dose-dependently reduced the expression of METH-induced NR2B, p-ERK, p-CREB, and BDNF in the PFC, hippocampus, and NAc of rats. Conclusion: GsRb1 regulated METH-induced neurotoxicity in vitro and METH-induced CPP through the NR2B/ERK/CREB/BDNF regulatory pathway. GsRb1 could be a therapeutic target for treating METH-induced neurotoxicity or METH addiction.

20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

  • Zhang, Haibo;Yi, Jun-Koo;Huang, Hai;Park, Sijun;Kwon, Wookbong;Kim, Eungyung;Jang, Soyoung;Kim, Si-Yong;Choi, Seong-kyoon;Yoon, Duhak;Kim, Sung-Hyun;Liu, Kangdong;Dong, Zigang;Ryoo, Zae Young;Kim, Myoung Ok
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.396-407
    • /
    • 2022
  • Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

Phenolic compounds from the flowers of Cosmos bipinnatus and their anti-atopic activity (코스모스(Cosmos bipinnatus) 꽃으로부터 phenolic 화합물의 분리 동정과 항아토피 효과)

  • Jeon, Hyeong-Ju;Kim, Hyoung-Geun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.215-219
    • /
    • 2022
  • The flowers of Cosmos bipinnatus were extracted with solvent made with methanol:water (4:1) and the concentrates were partitioned into ethyl acetate (EtOAc), n-butanol (n-BuOH), and water (H2O) fractions. The octadecyl silica gel (ODS) and silica gel (SiO2) column chromatographies were repeated for the EtOAc fraction to isolated of two phenolic compounds. The chemical structure of the isolated compounds were identified as benzyl O-β-ᴅ-glucopyranoside (1), and 2-phenylethyl O-β-ᴅ-glucopyranoside (2) through spectroscopic datas such as nuclear magnetic resornance, infrarad spectroscopy, and mass spectroscopy. These two compounds were first isolated from C. bipinnatus flowers through this study. To evaluate the anti-atopic activity of the two isolated compounds using a HaCaT cell line induced by ultraviolet light, several experiments were conducted and neither both compounds showed toxicity in the concentration range of 1 to 1,000 ㎍/mL. In the results of anti-atopic activity through Thymus and activation regualted chemokine (TARC) assay, both compounds showed dose-dependent TARC inhibitory activity. In particular, compound 1 showed significant activity even in a low concentration range of 10 ㎍/mL, and in different concentration ranges. Also compound 1 showed higher inhibitory activity than other compound, confirming that the anti-atopic activity was the most excellent. Based on these results, it is considered that it can be used as a functional cosmetic material.

MMP-1 and PIP Expressions from Ethanol Extract of Hydnocarpus anthelmintica Pierre in Human Fibroblast Cells (사람유래 섬유아세포에서 대풍자 에탄올 추출물의 MMP-1과 PIP의 발현에 대한 연구)

  • Choi, Eun-Young;Jang, Young-Ah;Ki, Se-Gie
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.938-946
    • /
    • 2022
  • This study aims to evaluate the effects of antioxidant activities, protein and mRNA expressions of matrix metalloproteinase (MMP) -1 and procollagen type I C-peptide (PIP) in 70% ethanol extract from Hydnocarpus anthelmintica Pierre (HE). DPPH and ABTS+ radicals scavenging assays were measured for antioxidant activities and HE had 73.5% and 74.4% of scavenging activities at 1,000 ㎍/ml concentration, respectively. And we investigated the inhibition of collagenase by HE, and the result was a 78.8% inhibition effect on concentrations of 1,000 ㎍/ml. In addition, an MTT assay was performed to confirm the toxicity of the CCD-986sk fibroblasts to the HE, and as a result, the cell viability rate was about 91.7% at a concentration of 50 ㎍/ml or less, and subsequent cell experiments were performed at a concentration of 50 ㎍/ml or less. We treated the cells with UVB (20 mJ/cm2) for stimulation, treated HE at various concentrations, and performed ELISA tests and RT-PCR experiments. And HE increased the PIP and mRNA in a dose-dependent manner and showed an expression rate of about 64.2% and 83.4%, respectively, at a concentration of 50 ㎍/ml compared with Cont (50.3% and 45.8%, respectively). And HE suppressed the MMP-1 protein and mRNA in a dose-dependent manner and showed a low expression rate of about 48.7% and 35.9%, respectively, at a concentration of 50 ㎍/ml. These results can be applied to developing anti-wrinkle materials for functional food and cosmetics with HE.

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Effects of Ground Vegetation and Pyrethroid Spray on the Population Dynamics of Panonychus citri (Acari: Tetranychidae) and Natural Enemies in Citrus Orchard: A Short-term Effect (감귤원에서 초생관리와 합성피레스로이드계 조합처리가 귤응애와 천적의 발생양상에 미치는 단기효과)

  • Hyun, Seung Young;Kim, Dong-Soon
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.255-266
    • /
    • 2022
  • This study was conducted to examine the effects of grass vegetation (W: manual weeding, NW: herbicide sprays) and pyrethroid spray (P: pyrethroid spray, NP: no pyrethroid spray) on the population dynamics of Panonychus citri and natural enemies in citrus orchards. Two essential hypothesis were made to test the population dynamics: 1) weed planting promotes natural enemies by offering habitat and alternative food sources, resulting in the reduction of P. citri populations, and 2) pyrethroid spray removes natural enemies by its non-selective toxicity, resulting in the increasement of P. citri populations. The observed natural enemy populations (mainly Phytoseiids and Agistemus sp.) were not different largely from the expected values in the hypothesis, which assumes more abundant natural enemies in weeds and no pyrethroid plots. Although some discrepancy was occurred in NW+NP and W+NP plots in 2011, the observed values were almost same with expected values in 2012. In overall, pesticide effect was strongly significant and pyrthroids removed largely natural enemies. Although habitat (weeds) effect showed a conflict result, natural enemy population increased in plots allowing weed growth, when considering the increased autumn population relatively compared to that of spring-summer population. The decreased abnormal P. citri populations in pyrethroid plots could be explained under the assumption of a strong repellent behavior of P. citri to the pyrethroids.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.

Melatonin Attenuates Mitochondrial Damage in Aristolochic Acid-Induced Acute Kidney Injury

  • Jian Sun;Jinjin Pan;Qinlong Liu;Jizhong Cheng;Qing Tang;Yuke Ji;Ke Cheng;Rui wang;Liang Liu;Dingyou Wang;Na Wu;Xu Zheng;Junxia Li;Xueyan Zhang;Zhilong Zhu;Yanchun Ding;Feng Zheng;Jia Li;Ying Zhang;Yuhui Yuan
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.97-107
    • /
    • 2023
  • Aristolochic acid (AA), extracted from Aristolochiaceae plants, plays an essential role in traditional herbal medicines and is used for different diseases. However, AA has been found to be nephrotoxic and is known to cause aristolochic acid nephropathy (AAN). AA-induced acute kidney injury (AKI) is a syndrome in AAN with a high morbidity that manifests mitochondrial damage as a key part of its pathological progression. Melatonin primarily serves as a mitochondria-targeted antioxidant. However, its mitochondrial protective role in AA-induced AKI is barely reported. In this study, mice were administrated 2.5 mg/kg AA to induce AKI. Melatonin reduced the increase in Upro and Scr and attenuated the necrosis and atrophy of renal proximal tubules in mice exposed to AA. Melatonin suppressed ROS generation, MDA levels and iNOS expression and increased SOD activities in vivo and in vitro. Intriguingly, the in vivo study revealed that melatonin decreased mitochondrial fragmentation in renal proximal tubular cells and increased ATP levels in kidney tissues in response to AA. In vitro, melatonin restored the mitochondrial membrane potential (MMP) in NRK-52E and HK-2 cells and led to an elevation in ATP levels. Confocal immunofluorescence data showed that puncta containing Mito-tracker and GFP-LC3A/B were reduced, thereby impeding the mitophagy of tubular epithelial cells. Furthermore, melatonin decreased LC3A/B-II expression and increased p62 expression. The apoptosis of tubular epithelial cells induced by AA was decreased. Therefore, our findings revealed that melatonin could prevent AA-induced AKI by attenuating mitochondrial damage, which may provide a potential therapeutic method for renal AA toxicity.