• Title/Summary/Keyword: TOXIC ELEMENT

Search Result 110, Processing Time 0.03 seconds

Recycling of Coal Ash and Related Environmental Issues in Australia (호주의 석탄재 재활용 사례와 석탄재 재활용과 관련된 환경 문제)

  • Park, Jin Hee;Ji, Sang-Woo;Shin, Hee-Young;Jo, Hwanju;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.28 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • Coal combustion products are generated during coal combustion and can be grouped into fly ash and bottom ash depending on collection methods. Fly ash and bottom ash can be recycled for various purposes based on their characteristics. Australia is the fourth largest coal production country in the world and reuses coal ash as cement, concrete, mine filler, and agricultural soil amendment. When fly ash is used as a supplement for cement and concrete, strength of the cement and the durability of the concrete can be improved. Use of coal combustion product for mine backfill stabilizes underground mine voids and stores a large amount of coal ash in the voids. Because of alkalinity of coal combustion products, it can neutralize acid mine drainage when used for mine backfill. In addition, it can be used as an agricultural soil amendment to improve acidity and physical properties of the soil and to supply plant nutrients. Recycling of fly ash in Australia will be further expanded because of its low trace element contents that can be toxic to plants and low radioactive element contents existing within soil background concentrations. The characteristics of coal combustion products are related to the characteristics of the coal used for combustion, and since Korea imports coal from Australia, Korean coal combustion products also can be recycled for various purposes.

A Feasibility Study of Seawater Injection Nozzle Prototype Development by Using 3D Printing (3D 프린팅을 이용한 해수분사용 노즐 시제품 개발의 가능성 연구)

  • Yoon, Seok-Tea;Park, Jong-Chun;Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • The seawater cooling system of naval ships is installed to remove the toxic substances generated by CBR (Chemical, Biological, and Radiological) warfare and reduce the infrared signature of naval ships from outside the hull. The dispersion range of the nozzle is determined according to the injection pressure of seawater and the nozzle type. Therefore, it is necessary to select the appropriate injection pressure and design the optimal nozzles to increase the seawater dispersion area and maximize the efficiency of the cooling system. In this study, the applying feasibility of 3D printing technology to produce an injection nozzle for the seawater cooling system was examined. To this end, the extruded plastic specimens were fabricated by 3D printing, and the physical properties of the specimens were estimated through tensile testing. After this, the strain and stress of the nozzle as a function of the pressure were simulated by applying the estimated results to the finite element analysis. The finite element analysis results showed that the nozzle remained within the elastic range at the optimal pressure. The nozzle was estimated to be structurally stable, and the possibility of this study was confirmed.

Indoor Air Quality Pollution of PM2.5 and Associated Trace Elements Affected by Environmental Tobacco Smoke (환경담배연기로 인한 실내공기 중 PM2.5 및 미량성분 오염 특성)

  • Lim, Jong-Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.317-324
    • /
    • 2014
  • Environmental tobacco smoke (ETS) samples were collected separately in mainstream and side-stream smoke using a self-designed smoking machine, and a total 40 of PM2.5 was collected with low volume air sampler at indoor environments with and without ETS in Daejeon, Korea. About 20 trace elements including toxic metals like As, Cr, Mn, Se, V, and Zn were determined in PM2.5 and ETS samples by instrumental neutron activation analysis (INAA). It is found that the emission factors of K, Cl, Na, and Al were much higher than those of toxic elements for both mainstream and side-stream smoke. The average concentration of PM2.5 was enriched by 1.5 times at smoking area ($58.7{\pm}18.1{\mu}g/m^3$) than at smoking free area ($38.6{\pm}12.7{\mu}g/m^3$). The concentration ratio of each element between smoking and smoking free area were ranged from 1.1 to 6.0 except Cu (1.0); especially, Ce (6.0), La (5.2), K (2.3), and Co (2.0) showed higher ratio, which suggests that the ETS is one of the possible increasing factors of PM2.5 and elemental concentration at indoor environment.

Effects of Doping Elements and the Amounts of Oxygen/Nitrogen Contents in Final Nitrides on the Characteristics of Red Pigment of Tantalum Nitrides (Ta3N5) (적색 안료인 탄탈륨 질화물(Ta3N5)의 특성에 도핑 물질 및 최종질화물의 산소/질소 함량이 미치는 영향)

  • Park, Eun-Young;Pee, Jae-Hwan;Kim, Yoo-Jin;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.396-402
    • /
    • 2009
  • Tantalum nitrides ($Ta_3N_5$) have been developed to substitute the Cd based pigments for non-toxic red pigment. Various doping elements were doped to reduce the amount of high price Tantalum element used and preserve the red color tonality. Doping elements were added in the synthesizing process of precursor of amorphous tantalum oxides and then Tantalum nitrides doped with various elements were obtained by ammonolysis process. The average particle size of final nitrides with secondary phases was larger than the nitride without the secondary phases. Also secondary phases reduced the red color tonality of final products. On the other hand, final nitrides without secondary phase had orthorhombic crystal system and presented good red color. In other words, in the case of nitrides without secondary phases, doping elements made a solid solution of tantalum nitride. In this context, doping process controlled the ionic state of nitrides and the amount of oxygen/nitrogen in final nitrides affected the color tonality.

Selenite Reduction to Elemental Selenium by Citrobacter Strain SE4-1 Isolated from a Stream Sediment (하천 퇴적토에서 분리한 Citrobacter strain SE4-1에 의한 아셀렌산염의 원소상 셀레늄으로의 환원)

  • Lee, Ji-Hoon;Cho, Ahyeon;Lee, Hyeri
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.146-149
    • /
    • 2018
  • BACKGROUND: Selenium is an essential element for all life forms but can be toxic above certain narrow levels. Prevalent forms of selenium in oxic environment are selenium oxyanions such as selenite and selenate, which may be contaminants in soils and water bodies. Bacterial reduction of more mobile selenium species (selenite or selenate) to less mobile elemental selenium may suggest a benign solution for alleviating toxicity and bioavailability of the selenium species. METHODS AND RESULTS: A facultative anaerobic bacterium, Citrobacter strain SE4-1 was isolated from the contaminated stream sediments and found to effectively reduce selenite to elemental selenium. Aqueous phase of selenite was analyzed by inductively couple plasma spectroscopy and the precipitated sphere-shaped elemental selenium was observed by transmission electron microscopy. CONCLUSION: The bacterial strain SE4-1 isolated in this study suggests a potential role in biogeochemical cycle of selenium by the selenite reduction in the stream environment, and potentials for biotechnological applications to reduceselenium concentrations in selenium-contaminated systems such as wastewater, soil, and groundwater.

Distribution of Arsenic in Korean Human Tissues (한국인의 체내 비소오염도 조사 연구)

  • 이상기;양자열;김기욱;이수연;권태정;유영찬
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • Humans are exposed to toxic element arsenic (As) from air, food and water The current study was performed to investigate the levels of arsenic in the internal organs (liver, kidney cortex, lung, cerebrum. abdominal muscle and abdominal skin) and to find out correlation with age and interrelationship between tissues in Korean human bodies who had lived in Seoul or Gyeonggi Province and Honam district. The tissues from 43 Korean cadavers were digested with microwave digestion system and arsenic was determined by inductively coupled plasma mass spectrometer (ICP-MS). The mean recovery percentages of arsenic In liver were about 80% and artenic concentrations in human tissues were almost uniform. The mean level of arsenic in internal tissues were at follow ; liver 44.556${\pm}$25.199 ppb, kidney cortex 42.652${\pm}$22.082 pub, lung 31.020 ${\pm}$ 17.504 ppb. cerebrum 35.703 ${\pm}$22.191 ppb, muscle 43.413${\pm}$26.619 ppb and skin 42.106${\pm}$25.8,11 ppb. No significant difference was found in the levels of arsenic between sexes. Meanwhile significant differences between districts where they had lived were found in all tissues tested. The levels of arsenic in the tissues of cadavers who had lived in Seoul Gyeonggi Province were higher than those of Honam district. In addition a positive correlation between As concentration and age was observed only in the cerebrum (p < 0.05). A significantly high correlations between tissues were observed in all tissues tested. This result also shows that the distribution of arsenic is uniform in internal tissues.

Review on the Selenuium, an Essential Trace Mineral (기능성 미량원소 Selenium 화합물에 대한 고찰)

  • 이춘기;남중현;김재철;구본철;강문석;박광근
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.13-23
    • /
    • 2003
  • The trace mineral, selenium (Se), is an essential nutrient of fundamental importance to human health. It is also very toxic and can cause Se poisoning (selenosis) in human and animals when its intake exceeds a suitable amount. Se functions within mammalian systems primarily in the form of solenoprotein. About 35 selenoproteins have been identified, though many have not yet been fully elucidated. Selenoproteins contain Se as selenocyseine (Sec) and perform variety of structural and enzymic roles; the enzymic roles are best-known as the antioxidants for hydrogen peroxides and lipid peroxides, and the catalysts for production of activity thyroid hormone. Glutathione peroxidases ($\textrm{GP}_X$) among the selenoproteins prevent the generation of free radicals and decrease the risk of oxidative damage to tissues, as does thioredoxin reductase (TR). TR also provides reducing power for several biochemical processes. Selenoproteins P and W are involved with oxidant defense in plasma and muscle, respectively, A selenoprotein is also required for sperm motility and may reduce the risk of miscarriage. Some epidemiological studies have revealed an inverse correlation between Se status and cardiovascular disease, and there is considerable evidence 1mm population com-parison data and animal studies that Se is anticarcinogenic. It is also suggested that Se should be needed for the proper functioning of the immune system, and appear to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. As research continues, the role of selenium in the etiology of chronic diseases like appropriate medical nutrition therapy can be delivered and its effectiveness assessed. Se status in individuals is affected by diet and the availability of the Se. The Se content of plants is affected by the content and availability of the element in the soil in which they are grown, and so greatly varies from country to country, while the Se composition of meat reflects the feeding patterns of livestock. This paper provides an overview on Se as an essential trace mineral for human.

Environmental Assessment of Heavy Metals Anna Abandoned Metalliferous Mine in Korea (국내 휴/폐광 금속황산 주변의 중금속 환경오염 평가)

  • 정명채;정문영;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.21-33
    • /
    • 2004
  • The objective of this study is to review of environmental assessment of heavy metals derived from various metalliferous mines in Korea. As a results of national wide research for heavy metal contaminations in the vicinity of metalleferous mines, the main contaminants are mine waste materials including tailings. From the materials, toxic elements including As, Cd, Cu, Pb and Zn can be dispersed into downstream through wind and water. Thus, soils around the mines contain elevated levels of those elements, which are over the guide values for environmental regulation of soils in Korea. Arsenic is one of the most important elements contaminated by mining activities, to a less extent, Cd, Cu, Pb and Zn. In spite of remediation works for some metal mines by the government, there are still lots of abandoned mines which are necessary for reclamation of mining sites. This study also includes that metal concentrations in soils and tailings can be varied upon various decomposition methods including 0.1N HC1 and aqua regia and sequential extraction scheme, with differences in each element, too. This may be due to geochemical characteristics of the elements, such as solubility, mobility and chemical forms in the geochemical environment. Finally, it is suggested that a certain organization should be runned by Korean government for management of abandoned mines.

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

Study of ZnS/CIGS Hetero-interface for Cd-free CIGS Solar Cells (Cd-free 태양전지를 위한 ZnS/CIGS 이종접합 특성 향상 연구)

  • Shin, Donghyeop;Kim, Jihye;Go, Youngmin;Yun, Jaeho;Ahn, Byungtae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.106.1-106.1
    • /
    • 2011
  • The Cu(In,Ga)Se2 (CIGS) thin film solar cells have been achieved until almost 20% efficiency by NREL. These solar cells include chemically deposited CdS as buffer layer between CIGS absorber layer and ZnO window layer. Although CIGS solar cells with CdS buffer layer show excellent performance, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. Among Cd-free candidate materials, the CIGS thin film solar cells with ZnS buffer layer seem to be promising with 17.2%(module by showa shell K.K.), 18.6%(small area by NREL). However, ZnS/CIGS solar cells still show lower performance than CdS/CIGS solar cells. There are several reported reasons to reduce the efficiency of ZnS/CIGS solar cells. Nakada reported ZnS thin film had many defects such as stacking faults, pin-holes, so that crytallinity of ZnS thin film is poor, compared to CdS thin film. Additionally, it was known that the hetero-interface between ZnS and CIGS layer made unfavorable band alignment. The unfavorable band alignment hinders electron transport at the heteo-interface. In this study, we focused on growing defect-free ZnS thin film and for favorable band alignment of ZnS/CIGS, bandgap of ZnS and CIGS, valece band structure of ZnS/CIGS were modified. Finally, we verified the photovoltaic properties of ZnS/CIGS solar cells.

  • PDF