• Title/Summary/Keyword: TNF signaling

Search Result 418, Processing Time 0.023 seconds

Immunostimulating activity of maysin isolated from corn silk in murine RAW 264.7 macrophages

  • Lee, Jisun;Kim, Sun-Lim;Lee, Seul;Chung, Mi Ja;Park, Yong Il
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.382-387
    • /
    • 2014
  • Corn silk (CS) has long been consumed as a traditional herb in Korea. Maysin is a major flavonoid of CS. The effects of maysin on macrophage activation were evaluated, using the murine macrophage RAW 264.7 cells. Maysin was isolated from CS by methanol extraction, and preparative $C_{18}$ reverse phase column chromatography. Maysin was nontoxic up to $100{\mu}g/ml$, and dose-dependently increased TNF-${\alpha}$ secretion and iNOS production by 11.2- and 4.2-fold, respectively, compared to untreated control. The activation and subsequent nuclear translocation of NF-${\kappa}B$ was substantially enhanced upon treatment with maysin ($1-100{\mu}g/ml$). Maysin also stimulated the phosphorylation of Akt and MAPKs (ERK, JNK). These results indicated that maysin activates macrophages to secrete TNF-${\alpha}$ and induce iNOS expression, via the activation of the Akt, NF-${\kappa}B$ and MAPKs signaling pathways. These results suggest for the first time that maysin can be a new immunomodulator, enhancing the early innate immunity.

Inhibitory activity of Terminalia chebula extract against TNF-α/IFN-γ-induced chemokine increase on human keratinocyte, HaCaT cells (TNF-α/IFN-γ 유도된 각질형성세포 염증에서 가자 추출물의 케모카인 저해 효과)

  • Jo, Il-Joo
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Objectives : Terminalia chebula (TC) has been used as a traditional remedy to treat gastrointestinal infectious and inflammatory diseases. However, its protective effects and mechanisms against skin inflammation have not been well-elucidated. Thus, the aim of this study is to evaluate the protective effects of the TC water extract and also to suggest a putative mechanism of TC against skin injury on human keratinocytes, HaCaT cells. Methods : HaCaT cells were pre-treated with TC for 1 h and then stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) (10 ng/mL each) to induce skin inflammation and injury. After 24 h, the cells were harvested to evaluate the expression of Th2 chemokines, such as C-C motif chemokine ligand 5 (CCL5, also known as RANTES), C-C chemokine ligand 17 (CCL17, also known as TARC) and C-C chemokine ligand 22 (CCL22, also known as MDC). To investigate the regulatory mechanisms of TC, we also assessed the phosphorylation of signal transducer and activator of transcription 1 (STAT1) signaling pathways in HaCaT cells. Results : Treatment of TC decreased the mRNA levels of RANTES, TARC and MDC with a concentration dependent manner against co-stimulation of TNF-α and IFN-γ. In addition, TC significantly reduced TNF-α and IFN-γ induced phosphorylation of STAT1. Conclusions : In summary, we propose that TC may be a promising candidate for anti-inflammatory skin protector through the inhibition of chemokines via STAT1 deactivation.

Interferon-gamma susceptibility of HL-60 cells, mononuclear cells of umbilical cord blood and bone marrow (HL-60 세포주, 제대혈 및 골수 단핵구 세포의 interferon-gamma에 대한 감수성에 관한 연구)

  • Cheong, Hee Jeong;Hong, Dae Sik;Kim, Sook Ja;Cheong, Jae Hwa;Lee, Joo Young;Lee, Nam Su;Park, Sung Kyu;Won, Jong Ho;Park, Hee Sook;Kim, Sung Il
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.230-235
    • /
    • 2001
  • Background: Finding of the regulation of various gene expression by cytokine including $IFN-{\gamma}$ in hematopoietic stem cell will light up the understanding of pathogenesis of aplastic anemia in various aspects. To study on aplastic anemia, however, we have to circumvent the difficulty of directly obtaining bone marrow stem cells from the patient. Therefore, we tried to find out a cell can replace the bone marrow stem cells for study on cell signaling pathway and regulation of gene expression by $IFN-{\gamma}$. Materials and Methods: HL-60 cells, of 20 ng/mL of $IFN-{\gamma}$. Total RNA was isolated from the cells and RT-PCR of the indoleamine 2,3-dioxygenase (IDO), $IFN-{\gamma}$, TNF-${\alpha}$, $MIP-1{\alpha}$, and $TGF-{\beta}2$ was carried out for the estimation of the gene expression. Results: $IFN-{\gamma}$ induced IDO gene expression of mononuclear cells from umbilical cord blood showed similar pattern as compared to that of bone marrow. Whether $INF-{\gamma}$ was treated or not, $TNF-{\alpha}$ was expressed in both mononuclear cells from umbilical cord blood and bone marrow. However, HL-60 cells showed different expression patterns. HL-60 cells would express neither IDO nor $TNF-{\alpha}$ even under the culture with 20ng/mL of $IFN-{\gamma}$. Conclusion: Our results showed bone marrow can be replaced with mononuclear cells from umbilical cord blood in the study on the relation between aplastic anemia and $IFN-{\gamma}$ including $IFN-{\gamma}$ cell signaling pathway.

  • PDF

Neuroprotective Effect of Duloxetine on Chronic Cerebral Hypoperfusion-Induced Hippocampal Neuronal Damage

  • Park, Jin-A;Lee, Choong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.115-120
    • /
    • 2018
  • Chronic cerebral hypoperfusion (CCH), which is associated with onset of vascular dementia, causes cognitive impairment and neuropathological alterations in the brain. In the present study, we examined the neuroprotective effect of duloxetine (DXT), a potent and balanced serotonin/norepinephrine reuptake inhibitor, on CCH-induced neuronal damage in the hippocampal CA1 region using a rat model of permanent bilateral common carotid arteries occlusion. We found that treatment with 20 mg/kg DXT could attenuate the neuronal damage, the reduction of phosphorylations of mTOR and p70S6K as well as the elevations of $TNF-{\alpha}$ and $IL-1{\beta}$ levels in the hippocampal CA1 region at 28 days following CCH. These results indicate that DXT displays the neuroprotective effect against CCH-induced hippocampal neuronal death, and that neuroprotective effect of DXT may be closely related with the attenuations of CCH-induced decrease of mTOR/p70S6K signaling pathway as well as CCH-induced neuroinflammatory process.

Immunostimulatory Activity of Hibiscus manihot Flower in Mouse Macrophages, RAW264.7 Cells

  • Geum, Na Gyeong;Yu, Ju Hyeong;Yeo, Joo Ho;Choi, Min Yeong;Park, Gwang Hun;Hong, Se Chul;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.6
    • /
    • pp.536-541
    • /
    • 2021
  • In this study, we investigated whether Hibiscus manihot flowers (HMF) exhibits immunostimulatory activity in RAW264.7 cells. HMF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β and TNF-α in RAW264.7 cells. TLR2 and TLR4 blocked HMF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPK signaling pathway reduced HMF-mediated production of immunostimulatory factors. From these results, HMF is thought to promote the production of immunostimulatory factors through activating TLR2/4/MAPK signaling in macrophages. It is believed that HMF can be developed as an agent related to immune enhancement in the future.

TSG101 Physically Interacts with Linear Ubiquitin Chain Assembly Complex (LUBAC) and Upregulates the TNFα-Induced NF-κB Activation

  • Eunju Kim;Hyunchu Cho;Gaeul Lee;Heawon Baek;In Young Lee;Eui-Ju Choi
    • Molecules and Cells
    • /
    • v.46 no.7
    • /
    • pp.430-440
    • /
    • 2023
  • Linear ubiquitin chain assembly complex (LUBAC) is a ubiquitin E3 ligase complex composed of HOIP, HOIL-1L, and SHARPIN that catalyzes the formation of linear/M1-linked ubiquitin chain. It has been shown to play a pivotal role in the nuclear factor (NF)-κB signaling induced by proinflammatory stimuli. Here, we found that tumor susceptibility gene (TSG101) physically interacts with HOIP, a catalytic component of LUBAC, and potentiates LUBAC activity. Depletion of TSG101 expression by RNA interference decreased TNFα-induced linear ubiquitination and the formation of TNFα receptor 1 signaling complex (TNF-RSC). Furthermore, TSG101 facilitated the TNFα-induced stimulation of the NF-κB pathway. Thus, we suggest that TSG101 functions as a positive modulator of HOIP that mediates TNFα-induced NF-κB signaling pathway.

Salvia miltiorrhiza Bunge Ameliorates Benign Prostatic Hyperplasia through Regulation of Oxidative Stress via Nrf-2/HO-1 Activation

  • Young-Jin Choi;Nishala Erandi Wedamulla;Seok-Hee Kim;Mirae Oh;Kang Sik Seo;Jeong Su Han;Eun Joo Lee;Young Ho Park;Young Jin Park;Eun-Kyung Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1059-1072
    • /
    • 2024
  • Oxidative stress is a key factor in the pathogenesis of benign prostatic hyperplasia (BPH) that leads to inflammation. This study aimed to evaluate the ameliorative effects of Salvia miltiorrhiza Bunge extract (HLT-101) on BPH through the regulation of oxidative stress and inflammation. A testosterone propionate (TP)-induced BPH rat model was orally administered HLT-101 (20, 40, or 80 mg/kg), and its effects on oxidative stress- and inflammation-related gene expression were examined. Further, HLT-101 was assessed for its effect on reactive oxygen species (ROS) levels and Nrf-2/HO-1 signaling pathways in BPH-1 cells. HLT-101 decreased testosterone-induced excessive free radical production and inflammatory factor activation. Moreover, HLT-101 treatment significantly decreased the intracellular ROS level in the TNF-α and IFN-γ treated BPH-1 cells through the activation of Nrf-2. In addition, HLT-101 treatment inhibited the NF-κB pathway and androgen receptor (AR) signaling, which is highly linked to the pathogenesis of BPH. Therefore, HLT-101 has the potential to be an effective treatment reagent for BPH because of its ability to reduce inflammation and oxidative stress via Nrf-2/HO-1 signaling.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

Inhibitory Effect of Scopoletin Isolated from Sorbus commixta on TNF-α-Induced Inflammation in Human Vascular Endothelial EA.hy926 Cells through NF-κB Signaling Pathway Suppression (마가목 수피에서 분리한 scopoletin의 EA.hy926 혈관내피세포에서 NF-κB 신호전달을 통한 TNF-α로 유도된 혈관염증 저해 효과)

  • Kang, Hye Ryung;Kim, Hyo Jung;Kim, Bomi;Kim, Sun-Gun;So, Jai-Hyun;Cho, Soo Jeong;Kwon, Hyun Sook
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.343-351
    • /
    • 2020
  • Sorbus commixta Hedl. has traditionally been used as a remedy for cough, asthma, and other bronchial disorders. In this study, three major triterpenoids-lupeol, β-sitosterol, and ursolic acid and a coumarin, scopoletin, were isolated from a CHCl3-soluble fragment of the bark of S. commixta. Their structures were identified by spectroscopic analyses, including mass spectrometry (MS), 1D-, and 2D- nuclear magnetic resonance spectroscopy (NMR), as well as by comparing the data with data reported in the literature. Scopoletin was isolated from this plant for the first time. It is a nutraceutical compound contained in many plants that has been reported to exert diverse biological activities, including anti-inflammatory effects. This study examined the inhibitory effect of scopoletin on TNF-α-induced vascular endothelial inflammation. Unlike the marginal impact of other compounds against low-density lipoprotein (LDL) oxidation and vascular endothelial inflammation, scopoletin showed remarkable activity on LDL oxidation (IC50 = 10.2 μM) and exerted vascular anti-inflammatory effects in EA.hy926 human endothelial cells activated by TNF-α. It suppressed the expression of adhesion molecules, such as ICAM-1, VCAM-1, and E-selectin, and blocked the adhesion between THP-1 monocytes and EA. hy926 endothelial cells. It also inhibited TNF-α-induced NF-κB translocation from the cytosol to the nucleus. Moreover, IκBα phosphorylation, which was increased by TNF-α treatment, was reduced after treatment with scopoletin. Thus, scopoletin inhibited TNF-α-induced vascular inflammation in endothelial cells by suppressing the NF-κB signaling pathway. These results demonstrate that owing to its anti-inflammatory activity in the vascular endothelium, scopoletin has the potential to inhibit atherosclerosis development.