• Title/Summary/Keyword: TLR signaling

Search Result 189, Processing Time 0.027 seconds

Cellular Signaling Molecules Associated with Peptidoglycan-Induced CCL3 Up-Regulation

  • Kim, Kang-Seung;Rhim, Byung-Yong;Eo, Seong-Kug;Kim, Koan-Hoi
    • Biomolecules & Therapeutics
    • /
    • 제19권3호
    • /
    • pp.302-307
    • /
    • 2011
  • Peptidoglycan (PGN) is detected in inflammatory cell-rich regions of human atheromatous plaques. The present study investigated the effects of PGN on CC chemokine ligand 3 (CCL3) expression, which is elevated in the atherosclerotic arteries, and determined cellular factors involved in PGN-mediated CCL3 up-regulation in mononuclear cells, with the goal of understanding the molecular mechanisms of inflammatory responses to bacterial pathogen-associated molecular patterns in diseased arteries. Exposure of human monocytic leukemia THP-1 cells to PGN resulted in enhanced secretion of CCL3 and profound induction of the CCL3 gene transcript. Both events were abrogated by oxidized 1-palmitoyl-2-arachidonosyl-sn-phosphatidylcholine, an inhibitor of Toll-like receptors 2/4. Pharmacological inhibitors such as U0126, SP6001250, Akt inhibitor IV, rapamycin, RO318220, diphenyleneiodonium chloride, and N-acetylcysteine also significantly attenuated PGN-mediated CCL3 up-regulation. However, polymyxin B, LY294002, and SB202190 did not influence CCL3 expression. We propose that PGN contributes to enhanced CCL3 expression in atherosclerotic plaques and that Toll-like receptors (TLR2), Akt, mTOR, mitogen-activated protein kinase, and reactive oxygen species are involved in that process.

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases

  • Choi, Alexander J.S.;Ryter, Stefan W.
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.441-448
    • /
    • 2014
  • Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.

Monocytes Contribute to IFN-β Production via the MyD88-Dependent Pathway and Cytotoxic T-Cell Responses against Mucosal Respiratory Syncytial Virus Infection

  • Tae Hoon Kim;Chae Won Kim;Dong Sun Oh;Hi Eun Jung;Heung Kyu Lee
    • IMMUNE NETWORK
    • /
    • 제21권4호
    • /
    • pp.27.1-27.12
    • /
    • 2021
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory viral infection in infants and children. However, little is known about the contribution of monocytes to antiviral responses against RSV infection. We identified the IFN-β production of monocytes using IFN-β/YFP reporter mice. The kinetic analysis of IFN-β-producing cells in in vivo RSV-infected lung cells indicated that monocytes are recruited to the inflamed lung during the early phase of infection. These cells produced IFN-β via the myeloid differentiation factor 88-mediated pathway, rather than the TLR7- or mitochondrial antiviral signaling protein-mediated pathway. In addition, monocyte-ablated mice exhibited decreased numbers of IFN-γ-producing and RSV Ag-specific CD8+ T cells. Collectively, these data indicate that monocytes play pivotal roles in cytotoxic T-cell responses and act as type I IFN producers during RSV infection.

섬괴불나무(Lonicera insularis Nakai) 추출물의 면역자극 및 항비만 활성 (Immunostimulatory and Anti-Obesity Activity of Lonicera insularis Nakai Extracts in Mouse Macrophages RAW264.7 Cells and Mouse Adipocytes 3T3-L1 Cells)

  • 유주형;여주호;최민영;이재원;금나경;안미연;정진부
    • 한국자원식물학회지
    • /
    • 제35권4호
    • /
    • pp.417-427
    • /
    • 2022
  • 본 연구에서는 섬괴불나무 열매(LIF), 잎(LIL) 그리고 줄기(LIS) 추출물의 면역증진 활성과 섬괴불나무 열매(LIF) 추출물의 항비만 활성을 평가하였다. 섬괴불나무 열매(LIF), 잎(LIL) 그리고 줄기(LIS) 추출물은 RAW264.7 세포에서 NO, iNOS, COX-2, IL-1𝛽, TNF-𝛼와 같은 면역증진인자의 생성을 증가시켰으며, IL-1𝛽의 발현은 NO생성과 관련된 것으로 보여진다. 면역증진인자은 TLR2/4를 통해 MAPKs중 p38 그리고 JNK를 자극하여 발현이 유도되는 것으로 판단된다. 항비만 실험에서, 섬괴불나무 열매(LIF) 추출물은 AMPK, HSL, ATGL의 발현 증가와 perilipin-1 발현 억제를통해 지질분해를 유도하여 세포 내 지질축적을 억제하는 것으로 나타났으며, 갈색지방세포로의 분화유도와 에너지 대사에 관여하는 인자인 PRDM16, PGC-1𝛼의 발현유도를 통해서도 지질축적을 억제하는 것으로 판단된다. 향후 섬괴불나무 추출물은 건강 보조제 및 기능성 식품으로의 활용이 가능할 것으로 판단되지만, 섬괴물나무 추출물의 어떠한 성분이 면역과 항비만 활성에 영향을 미치는지에 대한 성분분석이 필요하다. 또한, 본 연구는 세포를 이용한 실험으로 정확한 분석을 위해서는 동물모델을 이용한 섬괴불나무 추출물의 면역증진 및 항비만 활성에 관한 추가적인 연구가 진행되어야 할 것이다.

치주염 원인균 LPS-PG로 유도된 인체 치은섬유아세포에서 연뿌리 추출물에 대한 항염증 및 항산화 효과 (Anti-inflammatory and Antioxidative Effects of Lotus Root Extract in LPS-PG-Stimulated Human Gingival Fibroblast-1 Cells)

  • 이영경;김철환;정대원;이기원;오영택;김정일;정진우
    • 한국자원식물학회지
    • /
    • 제35권5호
    • /
    • pp.565-573
    • /
    • 2022
  • 치주조직에 존재하는 주요한 세포의 한 형태인 인체 치은섬유아세포는 다양한 구강유해세균으로부터 염증이 유발되어지며, 그중 대표적으로 치주염 원인균인 P. gingivalis의 내독소인 LPS-PG로부터 염증성 자극에 반응하여 다양한 염증매개 물질을 분비한다. 본 연구에서는 치주염을 일으키는 주요한 원인균 중 하나인 P. gingivalis로 부터 분리한 LPS-PG를 이용하여 인체 치은섬유아세포주인 HGF-1 세포에 염증을 유도한 후 LRE에 대한 항염증 및 항산화 효과를 분석하였다. 실험 결과, LRE는 LPS-PG 유도에 따라 iNOS에 의한 NO 생성과 COX-2에 의한 PGE2와 같은 염증 매개 인자의 발현 및 생성 억제와 함께 염증성 싸이토카인(TNF-α, IL-1β및 IL-6)의 생성 또한 억제하였다. 신호전달계에서 염증성 전사인자의 발현 경로를 확인하기 위하여 TLR4/Myd88/NF-κB의 활성을 확인한 결과, LRE 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 또한 산화 환원 효소로 항염증효과를 나타내는 것으로 알려진2상 효소 중 하나인 NQO-1과 이의 전사인자인 Nrf2를 분석 한 결과 LRE 처리에 의해 효소의 활성이 높아지는 것을 확인할 수 있었다. 결론적으로 LRE는 TLR4/Myd88/NF-κB 신호전달 경로를 억제하고 NQO1/Nrf2 활성을 유도함으로써 HGF-1 세포에서 LPS-PG에 의해 유도된 염증을 억제하는 것으로 사료되며, 향후 LRE는 식·의약품 소재 개발에서 치주질환 개선의 가능성이 있는 후보물질이 될 수 있을 것으로 사료된다.

Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response

  • Lee, Su Jung;Shin, Sung Jae;Lee, Seung Jun;Lee, Moon Hee;Kang, Tae Heung;Noh, Kyung Tae;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • 제47권9호
    • /
    • pp.512-517
    • /
    • 2014
  • In this study, we showed that Mycobacterium abscessus MAB2560 induces the maturation of dendritic cells (DCs), which are representative antigen-presenting cells (APCs). M. abscessus MAB2560 stimulate the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor (TNF)-${\alpha}$, IL-$1{\beta}$, and IL-12p70] and reduce the endocytic capacity and maturation of DCs. Using $TLR4^{-/-}$ DCs, we found that MAB2560 mediated DC maturation via Toll-like receptor 4 (TLR4). MAB2560 also activated the MAPK signaling pathway, which was essential for DC maturation. Furthermore, MAB2560-treated DCs induced the transformation of $na\ddot{i}ve$ T cells to polarized $CD4^+$ and $CD8^+$ T cells, which would be crucial for Th1 polarization of the immune response. Taken together, our results indicate that MAB2560 could potentially regulate the host immune response to M. abscessus and may have critical implications for the manipulation of DC functions for developing DC-based immunotherapy.

The Mycobacterium avium subsp. Paratuberculosis protein MAP1305 modulates dendritic cell-mediated T cell proliferation through Toll-like receptor-4

  • Lee, Su Jung;Noh, Kyung Tae;Kang, Tae Heung;Han, Hee Dong;Shin, Sung Jae;Soh, Byoung Yul;Park, Jung Hee;Shin, Yong Kyoo;Kim, Han Wool;Yun, Cheol-Heui;Park, Won Sun;Jung, In Duk;Park, Yeong-Min
    • BMB Reports
    • /
    • 제47권2호
    • /
    • pp.115-120
    • /
    • 2014
  • In this study, we show that Mycobacterium avium subsp. paratuberculosis MAP1305 induces the maturation of bone marrow-derived dendritic cells (BMDCs), a representative antigen presenting cell (APC). MAP1305 protein induces DC maturation and the production of pro-inflammatory cytokines (Interleukin (IL)-6), tumor necrosis factor (TNF)-${\alpha}$, and IL-$1{\beta}$) through Toll like receptor-4 (TLR-4) signaling by directly binding with TLR4. MAP1305 activates the phosphorylation of MAPKs, such as ERK, p38MAPK, and JNK, which is essential for DC maturation. Furthermore, MAP1305-treated DCs transform naive T cells to polarized $CD4^+$ and $CD8^+$ T cells, thus indicating a key role for this protein in the Th1 polarization of the resulting immune response. Taken together, M. avium subsp. paratuberculosis MAP1305 is important for the regulation of innate immune response through DC-mediated proliferation of $CD4^+$ and $CD8^+$ T cells.

Differential Effect of MyD88 Signal in Donor T Cells on Graft-versus-Leukemia Effect and Graft-versus-Host Disease after Experimental Allogeneic Stem Cell Transplantation

  • Lim, Ji-Young;Ryu, Da-Bin;Lee, Sung-Eun;Park, Gyeongsin;Choi, Eun Young;Min, Chang-Ki
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.966-974
    • /
    • 2015
  • Despite the presence of toll like receptor (TLR) expression in conventional $TCR{\alpha}{\beta}$ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 ($H-2^b$) ${\rightarrow}$ B6D2F1 ($H-2^{b/d}$), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type ($H-2^d$) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-${\gamma}$ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-${\gamma}$ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.

Effect of Vitamin E Supplementation on Intestinal Barrier Function in Rats Exposed to High Altitude Hypoxia Environment

  • Xu, Chunlan;Sun, Rui;Qiao, Xiangjin;Xu, Cuicui;Shang, Xiaoya;Niu, Weining;Chao, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권4호
    • /
    • pp.313-320
    • /
    • 2014
  • The study was conducted to investigate the role of vitamin E in the high altitude hypoxia-induced damage to the intestinal barrier in rats. Sprague-Dawley rats were divided into control (Control), high altitude hypoxia (HH), and high altitude hypoxia + vitamin E (250 mg/kg $BW^*d$) (HV) groups. After the third day, the HH and HV groups were placed in a hypobaric chamber at a stimulated elevation of 7000 m for 5 days. The rats in the HV group were given vitamin E by gavage daily for 8 days. The other rats were given equal volume saline. The results showed that high altitude hypoxia caused the enlargement of heart, liver, lung and kidney, and intestinal villi damage. Supplementation with vitamin E significantly alleviated hypoxia-caused damage to the main organs including intestine, increased the serum superoxide dismutase (SOD) (p< 0.05), diamino oxidase (DAO) (p< 0.01) levels, and decreased the serum levels of interleukin-2 (IL-2) (p< 0.01), interleukin-4 (IL-4) (p<0.001), interferon-gamma ($IFN-{\gamma}$) (p<0.01) and malondialdehyde (MDA) (p<0.001), and decreased the serum erythropoietin (EPO) activity (p<0.05). Administration of vitamin E significantly increased the S-IgA (p<0.001) in ileum and significantly improved the expression levels of occludin and $I{\kappa}B{\alpha}$, and decreased the expression levels of hypoxia-inducible factor 1 alpha and 2 alpha ($HIF-1{\alpha}$ and $HIF-2{\alpha}$), Toll-like receptors (TLR4), P-$I{\kappa}B{\alpha}$ and nuclear factor-${\kappa}B$ p65(NF-${\kappa}B$ P65) in ileum compared to the HH group. This study suggested that vitamin E protectis from intestinal injury caused by high altitude hypoxia environment. These effects may be related to the HIF and TLR4/NF-${\kappa}B$ signaling pathway.

Protective effect of Macleaya cordata isoquinoline alkaloids on lipopolysaccharide-induced liver injury in broilers

  • Jiaxin Chen;Weiren Yang;Hua Liu;Jiaxing Niu;Yang Liu;Qun Cheng
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.131-141
    • /
    • 2024
  • Objective: This experiment aimed to explore the protective action of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced liver injury in broilers. Methods: Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON and LPS groups were provided with a basal diet, whereas the LPS+IA group received the basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 days of age, while those in CON group were injected with equivalent amount of saline solution. Results: Results showed LPS injection caused systemic and liver inflammation in broilers, inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines and caspases levels induced by LPS, as well as the expressions of genes related to the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor-kappa B (NF-κB) pathway. Conclusion: Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling pathway in broilers.