Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0104

Inflammasomes: Molecular Regulation and Implications for Metabolic and Cognitive Diseases  

Choi, Alexander J.S. (Center for Sleep Medicine, Department of Pulmonary, Critical Care, and Sleep Medicine, Tufts University School of Medicine)
Ryter, Stefan W. (Joan and Sanford I. Weill Department of Medicine, New York-Presbyterian Hospital, Weill Cornell Medical College)
Abstract
Inflammasomes are specialized signaling platforms critical for the regulation of innate immune and inflammatory responses. Various NLR family members (i.e., NLRP1, NLRP3, and IPAF) as well as the PYHIN family member AIM2 can form inflammasome complexes. These multiprotein complexes activate inflammatory caspases (i.e., caspase-1) which in turn catalyze the maturation of select pro-inflammatory cytokines, including interleukin (IL)-$1{\beta}$ and IL-18. Activation of the NLRP3 inflammasome typically requires two initiating signals. Toll-like receptor (TLR) and NOD-like receptor (NLR) agonists activate the transcription of pro-inflammatory cytokine genes through an NF-${\kappa}B$-dependent priming signal. Following exposure to extracellular ATP, stimulation of the P2X purinoreceptor-7 ($P2X_7R$), which results in $K^+$ efflux, is required as a second signal for NLRP3 inflammasome formation. Alternative models for NLRP3 activation involve lysosomal destabilization and phagocytic NADPH oxidase and /or mitochondria-dependent reactive oxygen species (ROS) production. In this review we examine regulatory mechanisms that activate the NLRP3 inflammasome pathway. Furthermore, we discuss the potential roles of NLRP3 in metabolic and cognitive diseases, including obesity, type 2 diabetes mellitus, Alzheimer's disease, and major depressive disorder. Novel therapeutics involving inflammasome activation may result in possible clinical applications in the near future.
Keywords
cognitive disease; diabetes; inflammasome; inflammation; metabolism; obesity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, L., Zhai, Y.Q., Xu, L.L., Qiao, C., Sun, X.L., Ding, J.H., Lu, M., and Hu, G. (2014b). Metabolic inflammation exacerbates dopaminergic neuronal degeneration in response to acute MPTP challenge in type 2 diabetes mice. Exp. Neurol. 251, 22-29.   DOI   ScienceOn
2 Warner-Schmidt, J.L., Vanover, K.E., Chen, E.Y., Marshall, J.J., and Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc. Natl. Acad. Sci. USA 108, 9262-9267.   DOI   ScienceOn
3 Wellen, K.E., and Hotamisligil, G.S. (2005). Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111-1119.   DOI
4 Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415.   DOI   ScienceOn
5 World Health Organization. (2002). The world health report 2002: Reducing risks, promoting healthy life. Geneva WHO 1-167.
6 World Health Organization. (2011). Global status report on noncommunicable diseases 2010. Geneva WHO 1-162.
7 Zhang, Y., Liu, L., Peng, Y.L., Liu, Y.Z., Wu, T.Y., Shen, X.L., Zhou, J.R., Sun, D.Y., Huang, A.J., Wang, X., et al. (2013). Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci. Ther. 20, 119-124.
8 Zhou, R., Tardivel, A., Thorens, B., Choi, I., and Tschopp, J. (2010). Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136-140.   DOI   ScienceOn
9 Stienestra, R., Joosten, L.A., Koenen, T., van Tits, B., van Diepen, J.A., van den Berg, S.A., Rensen, P.C., Voshol, P.J., Fantuzzi, G., Hijmans, A., et al. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Metabolism 12, 593-605.
10 Stienestra, R., van Diepen, J.A., Tack, C.J., Zaki, M.H., van de Veerdonk, F.L., Perera, D., Neale, G.A., Hooiveld, G.J., Hijmans, A., Vroegrijk, I., et al. (2011). Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 108, 15324-15329.   DOI   ScienceOn
11 Sun, S., Xia, S., Ji, Y., Kersten, S., and Qi, L. (2012). The ATP-P2 x 7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 61, 1471-1478.   DOI
12 Wang, H., Capell, W., Yoon, J.H., Faubel, S., and Eckel, R.H. (2014a). Obesity development in caspase-1-deficient mice. Int. J. Obes. (Lond) 38, 152-155.   DOI   ScienceOn
13 Trnka, J., Blaikie, F.H., Logan, A., Smith, R.A., and Murphy, M.P. (2009). Antioxidant properties of MitoTEMPOL and its hydroxylamine. Free Radic Res. 43, 4-12.   DOI   ScienceOn
14 Vandanmagsar, B., Youm, Y.H., Ravussin, A., Galgani, J.E., Stadler, K., Mynatt, R.L., Ravussin, E., Stephens, J.M., and Dixit, V.D. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179-188.   DOI   ScienceOn
15 van Diepen, J.A., Stienstra, R., Vroegrijk, I.O., van den Berg, S.A., Salvatori, D., Hooiveld, G.J., Kersten, S., Tack, C.J., Netea, M.G., Smit, J.W., et al. (2013). Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion. J. Lipid Res. 54, 448-456.   DOI
16 Saijo, K., Winner, B., Carson, C.T., Collier, J.G., Boyer, L., Rosenfeld, M.G., Gage, F.H., and Glass, C.K. (2009). A Nurr1/CoR EST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137, 47-59.   DOI   ScienceOn
17 Sautin, Y.Y., Nakagawa, T., Zharikov, S., and Johnson, R.J. (2007). Adverse effects of the classical antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am. J. Physiol. Cell Physiol. 293, C584-C596   DOI   ScienceOn
18 Schroder, K., and Tschopp, J. (2010). The inflammasomes. Cell 140, 821-832.   DOI   ScienceOn
19 Schroder, K., Zhou, R., and Tschopp, J. (2010). The NLRP3 inflammasome: a sensor for metabolic danger? Science 327, 296-300.   DOI   ScienceOn
20 Scott, P., Ma, H., Viriyakosol, S., Terkeltaub, R., and Liu-Bryan, R. (2006). Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J. Immunol. 177, 6370-6378.   DOI
21 Shoelson, S.E., Lee, J., and Goldfine, A.B. (2006). Inflammation and insulin resistance. J. Clin. Invest. 116, 1793-1801.   DOI   ScienceOn
22 Solini, A., Menini, S., Rossi, C., Ricci, C., Santini, E., Blasetti Fantauzzi, C., Iacobini, C., and Pugliese, G. (2013). The purinergic 2X7 receptor participates in renal inflammation and injury induced by high-fat diet: possible role of NLRP3 inflammasome activation. J. Pathol. 231, 342-353.   DOI
23 Nakahira, K., Haspel, J.A., Rathinam, V.A., Lee, S.J., Dolinay, T., Lam, H.C., Englert, J.A., Rabinovitch, M., Cernadas, M., Kim, H.P., et al. (2011). Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222-230.
24 Parvathenani, L.K., Tertyshnikova, S., Greco, C.R., Roberts, S.B., Robertson, B., and Posmantur, R. (2003). P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309-13317.   DOI   ScienceOn
25 Pelegrin, P., and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071-5082.   DOI   ScienceOn
26 Pelegrin, P., and Surprenant, A. (2007). Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptakeindependent pathway. J. Biol. Chem. 282, 2386-2394.   DOI   ScienceOn
27 Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., and Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583-1689.   DOI   ScienceOn
28 Qu, Y., Misaghi, S., Newton, K., Gilmour, L.L., Louie, S., Cupp, J.E., Dubyak, G.R., Hackos, D., and Dixit, V.M. (2011). Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553-6561.   DOI
29 Poyet, J.L., Srinivasula, S.M., Tnani, M., Razmara, M., Fernandes-Alnemri, T., and Alnemri, E.S. (2001). Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309-28313.   DOI   ScienceOn
30 Qu, Y., Misaghi, S., Newton, K., Gilmour, L.L., Louie, S., Cupp, J.E., Dubyak, G.R., Hackos, D., and Dixit, V.M. (2006). Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol. 186, 6553-6561.
31 Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241.   DOI   ScienceOn
32 Martinon, F., Mayor, A., and Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229-265.   DOI   ScienceOn
33 Masters, S.L., Dunne, A., Subramanian, S.L., Hull, R.L., Tannahill, G.M., Sharp, F.A., Becker, C., Franchi, L., Yoshihara, E., Chen, Z., et al. (2010). Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1b in type 2 diabetes. Nat. Immunol. 11, 897-904.   DOI   ScienceOn
34 McGeer, P.L., Itagaki, S., Tago, H., and McGeer, E.G. (1987). Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLADR. Neurosci. Lett. 79, 195-200.   DOI   ScienceOn
35 Menu, P., and Vince, J.E. (2011). The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin. Exp. Immunol. 166, 1-15.   DOI   ScienceOn
36 Leemans, J.C., Cassel, S.L., and Sutterwala, F.S. (2011). Sensing damage by the NLRP3 inflammasome. Immunol. Rev. 243, 152-162.   DOI   ScienceOn
37 Mraz, M., Lacinova, Z., Drapalova, J., Haluzikova, D., Horinek, A., Matoulek, M., Trachta, P., Kavalkova, P., Svacina, S., and Haluzik, M. (2011). The effect of verylow- calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 96, E606-613.   DOI
38 Lamkanfi, M., Mueller, J.L., Vitari, A.C., Misaghi, S., Fedorova, A., Deshayes, K., Lee, W.P., Hoffman, H.M., and Dixit, V.M. (2009). Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61-70.   DOI   ScienceOn
39 Latz, E., Xiao, T.S., and Stutz, A. (2013). Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397-411.   DOI   ScienceOn
40 Liu, Y., Xiao, Y., and Li, Z. (2011). P2X7 receptor positively regulates MyD88-dependent NF-kB activation. Cytokine 55, 229-236.   DOI   ScienceOn
41 Lu, M., Sun, X.L., Qiao, C., Liu, Y., Ding, J.H., and Hu, G. (2014). Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol. Aging 35, 421-430.   DOI   ScienceOn
42 Ludlow, L.E., Johnstone, R.W., and Clarke, C.J. (2005). The HIN-200 family: more than interferon-inducible genes? Exp. Cell Res. 308, 1-17.   DOI   ScienceOn
43 Maes, M., Bosmans, E., Meltzer, H.Y., Scharpe, S., and Suy, E. (1993). Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? Am. J. Psychiatry 150, 1189-1193.   DOI   ScienceOn
44 Jankowsky, J.L., Slunt, H.H., Ratovitski, T., Jenkins, N.A., Copeland, N.G., and Borchelt, D.R. (2001). Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17, 157-165.   DOI   ScienceOn
45 Mariathasan, S., Newton, K., Monack, D.M., Vucic, D., French, D.M., Lee, W.P., Roose-Girma, M., Erickson, S., and Dixit, V.M. (2004). Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213-218.   DOI   ScienceOn
46 Martinon, F., Burns, K., and Tschopp, J. (2002). The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-$1{\beta}$. Mol. Cell 10, 417-426.   DOI   ScienceOn
47 Iwata, M., Ota, K.T., and Duman, R.S. (2013). The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav. Immun. 31, 105-114.   DOI   ScienceOn
48 Kahn, S.E., Hull, R.L., and Utzschneider, K.M.. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840-846.   DOI   ScienceOn
49 Kanneganti, T.D., Lamkanfi, M., Kim, Y.G., Chen, G., Park, J.H., Franchi, L., Vandenabeele, P., and Nunez, G. (2007). Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26, 433-443.   DOI   ScienceOn
50 Kessler, R.C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K.R., Rush, A.J., Walters, E.E., Wang, P.S., and National Comorbidity Survey Replication (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). J. Am. Med. Assoc. 289, 3095-3105.   DOI   ScienceOn
51 Koo, J.W., and Duman, R.S. (2008). IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 105, 751-756.   DOI   ScienceOn
52 Hentze, H., Lin, X.Y., Choi, M.S., and Porter, A.G. (2003). Critical role for cathepsin B in mediating caspase-1-dependent interleukin-18 maturation and caspase-1-independent necrosis triggered by the microbial toxin nigericin. Cell Death Differ. 10, 956-968.   DOI   ScienceOn
53 Korcok, J., Raimundo, L.N., Ke, H.Z., Sims, S.M., and Dixon, S.J. (2004). Extracellular nucleotides act through P2X7 receptors to activate NF-kB in osteoclasts. J. Bone Miner. Res. 19, 642-651.   DOI   ScienceOn
54 Kotas, M.E., Jurczak, M.J., Annicelli, C., Gillum, M.P., Cline, G.W., Shulman, G.I., and Medzhitov, R. (2013). Role of caspase-1 in regulation of triglyceride metabolism. Proc. Natl. Acad. Sci. USA 110, 4810-4815.   DOI   ScienceOn
55 Heneka, M.T., Kummer, M.P., Stutz, A., Delekate, A., Schwartz, S., Vieira-Saecker, A., Griep, A., Axt, D., Remus, A., Tzeng, TC., et al. (2013). NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674-678.
56 Hiscott, J., Marois, J., Garoufalis, J., D'Addario, M., Roulston, A., Kwan, I., Pepin, N., Lacoste, J., Nguyen, H., Bensi, G., et al. (1993). Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: evidence for a positive autoregulatory loop. Mol. Cell. Biol. 13, 6231-6240.
57 Hook, V.Y., Kindy, M., and Hook, G. (2008). Inhibitors of cathepsin B Improve memory and reduce b-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, b-secretase site of the amyloid precursor protein. J. Biol. Chem. 283, 7745-7753.   DOI   ScienceOn
58 Hornung, V., Bauernfeind, F., Halle, A., Samstad, E.O., Kono, H., Rock, K.L., Fitzgerald, K.A., and Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847-856.   DOI   ScienceOn
59 Itagaki, S., McGeer, P.L., Akiyama, H., Zhu, S., and Selkoe, D. (1989). Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 24, 173-182.   DOI   ScienceOn
60 Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., Latz, E., and Fitzgerald, K.A. (2009). AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514-518.   DOI   ScienceOn
61 Finucane, M.M., Stevens, G.A., Cowan, M.J., Danaei, G., Lin, J.K., Paciorek, C.J., Singh, G.M., Gutierrez, H.R., Lu, Y., Bahalim, A.N., et al. (2011). National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 337, 557-567.
62 Franchi, L., Eigenbrod, T., and Nunez, G. (2009). Cutting edge: TNF-a mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J. Immunol. 183, 792-796.   DOI   ScienceOn
63 Fujihara, M., Muroi, M., Tanamoto, K., Suzuki, T., Azuma, H., and Ikeda, H. (2003). Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol. Ther. 100, 171-194.   DOI   ScienceOn
64 Glinsky, G.V. (2008). SNP-guided microRNA maps (MirMaps) of 16 common human disorders identify a clinically accessible therapy reversing transcriptional aberrations of nuclear import and inflammasome pathways. Cell Cycle 7, 3564-3576.   DOI
65 Guarda, G., Zenger, M., Yazdi, A.S., Schroder, K., Ferrero, I., Menu, P., Tardivel, A., Mattmann, C., and Tschopp, J. (2011). Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 186, 2529-2534.   DOI
66 Donath, M.Y., and Shoelson, S.E. (2011). Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98-107.   DOI   ScienceOn
67 Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., Fitzgerald, K.A., Latz, E., Moore, K.J., and Golenbock, D.T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857-865.   DOI   ScienceOn
68 Heid, M.E., Keyel, P.A., Kamga, C., Shiva, S., Watkins, S.C., and Salter, R.D. (2013). Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230-5238.   DOI   ScienceOn
69 Devi, T.S., Lee, I., Huttemann, M., Kumar, A., Nantwi, K.D., and Singh, L.P. (2012). TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp. Diabetes Res. 2012, 438238.
70 Dostert, C., Petrilli, V., Van Bruggen, R., Steele, C., Mossman, B.T., and Tschopp J. (2008). Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677.   DOI   ScienceOn
71 Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctot, K.L. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446-457.   DOI   ScienceOn
72 Eizirik, D.L., Sammeth, M, Bouckenooghe, T., Bottu, G., Sisino, G., Igoillo-Esteve, M., Ortis, F., Santin, I., Colli, M.L., Barthson, J., et al. (2012). The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552.   DOI   ScienceOn
73 Emanuela, F., Grazia, M., Marco de, R., Maria Paola, L., Giorgio, F., and Marco, B. (2012). Inflammation as a link between obesity and metabolic syndrome. J. Nutr. Metab. 2012, 476380.
74 Balistreri, C.R., Colonna-Romano, G., Lio, D., Candore, G., and Caruso, C. (2009). TLR4 polymorphisms and ageing: implications for the pathophysiology of age-related diseases. J. Clin. Immunol. 29, 406-415.   DOI   ScienceOn
75 Faustin, B., Lartigue, L., Bruey, J.M., Luciano, F., Sergienko, E., Bailly-Maitre, B., Volkmann, N., Hanein, D., Rouiller, I., and Reed, J.C. (2007). Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol. Cell 25, 713-724.   DOI   ScienceOn
76 Feve, B., and Bastard, J.P. (2009). The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 5, 305-311   DOI   ScienceOn
77 Allen, I.C., Scull, M.A., Moore, C.B., Holl, E.K., McElvania-TeKippe, E., Taxman, D.J., Guthrie E.H., Pickles, R.J., and Ting, J.P. (2009). The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556-565.   DOI   ScienceOn
78 Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., Fernandes-Alnemri, T., Wu, J., Monks, B.G., Fitzgerald, K.A., et al. (2009). Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787-791.   DOI   ScienceOn
79 Chatterjee, S., Rana, R., Corbett, J., Kadiiska, M.B., Goldstein, J., and Mason, R.P. (2012). P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic. Biol. Med. 52, 1666-1679.   DOI   ScienceOn
80 Davis, B.K., Wen, H., and Ting, J.P. (2011). The Inflammasome NLRs in immunity, inflammation, and associated diseases. Ann. Rev. Immun 29, 707-735.   DOI   ScienceOn
81 Mandrup-Poulsen, T., Pickersgill, L., and Donath, M.Y. (2010). Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158-166.   DOI   ScienceOn
82 Raison, C.L., and Miller, A.H. (2013). Malaise, melancholia and madness: The evolutionary legacy of an inflammatory bias. Brain Behav. Immun. 13, 467-475.
83 Skeldon, A.M., Faraj, M., and Saleh, M. (2014). Caspases and inflammasomes in metabolic inflammation. Immunol. Cell Biol. 92, 304-313.   DOI   ScienceOn
84 Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., and Hyman, B.T. (2008). Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer's disease. Nature 451, 720-724.   DOI   ScienceOn
85 Glass, C.K., Saijo, K., Winner, B., Marchetto, M.C., and Gage, F.H. (2010). Mechanisms underlying inflammation in neurodegeneration. Cell 140, 918-934.   DOI   ScienceOn
86 Alcocer-Gomez, E., de Miguel, M., Casas-Barquero, N., Nunez-Vasco, J., Sanchez-Alcazar, J.A., Fernandez-Rodriguez, A., and Cordero, M.D. (2013). NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav. Immun. 36, 111-117.