• 제목/요약/키워드: TJP1

검색결과 7건 처리시간 0.027초

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • 제44권11호
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells

  • Lee, So Hee;Paek, A Rome;Yoon, Kyungsil;Kim, Seok Hyun;Lee, Soo Young;You, Hye Jin
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Tight junction protein 1 (TJP1), a component of tight junction, has been reported to play a role in protein networks as an adaptor protein, and TJP1 expression is altered during tumor development. Here, we found that TJP1 expression was increased at the RNA and protein levels in TGF-${\beta}$-stimulated lung cancer cells, A549. SB431542, a type-I TGF-${\beta}$ receptor inhibitor, as well as SB203580, a p38 kinase inhibitor, significantly abrogated the effect of TGF-${\beta}$ on TJP1 expression. Diphenyleneiodonium, an NADPH oxidase inhibitor, also attenuated TJP1 expression in response to TGF-${\beta}$ in lung cancer cells. When TJP1 expression was reduced by shRNA lentiviral particles in A549 cells (A549-sh TJP1), wound healing was much lower than in cells infected with control viral particles. Taken together, these data suggest that TGF-${\beta}$ enhances TJP1 expression, which may play a role beyond structural support in tight junctions during cancer development.

친환경 육계 생산을 위한 장 점막 밀접 접합 단백질의 발현량 조절이 생산성에 미치는 효과: Meta-analysis (Effect of Intestinal Tight Junction Protein Expression on Growth Performance for Eco-friendly Broiler Production: Meta-analysis)

  • 전은정;박명선;한재규;김정용;안성일
    • 한국유기농업학회지
    • /
    • 제29권1호
    • /
    • pp.125-136
    • /
    • 2021
  • 본 연구에서는 meta-analysis를 통해 TJP의 발현량과 육계의 생산성 간의 상관관계를 살펴보았다. TJP의 발현량은 생산성의 향상과 밀접한 관계가 있는 것으로 나타났으며, 특히 occludin의 발현이 육계의 생산성과 가장 큰 상관관계를 보이는 것으로 나타났다. Occludin 발현량 조절과 장 점막 건강이 육계 생산성 향상을 위한 영양 관리 전략 지표로 활용될 수 있을 것이다.

Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144 Targeting of OCLN and ZO1

  • Hou, Qiuke;Huang, Yongquan;Wang, Yan;Liao, Liu;Zhu, Zhaoyang;Zhang, Wenjie;Liu, Yongshang;Li, Peiwu;Chen, Xinlin;Liu, Fengbin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권10호
    • /
    • pp.1480-1487
    • /
    • 2020
  • Our previous report determined that miR-144 is a key regulator of intestinal epithelial permeability in irritable bowel syndrome with diarrhea (IBS-D) rats. Recent evidence has shown that lactobacilli play an important role in the relief of IBS-D symptoms. However, few studies have addressed the mechanisms by which microRNAs and lactobacilli exert their beneficial effects on intestinal epithelial permeability. Hence, to elucidate whether miRNAs and lactobacilli play roles in intestinal epithelial barrier regulation, we compared miRNA expression levels in intestinal epithelial cells (IECs) under Lactobacillus casei (L. casei LC01) treatment. IECs and L. casei LC01 were co-cultured and then subjected to microRNA microarray assay. qRT-PCR, western blot and ELISA were used to detect the expression of occludin (OCLN) and zonula occludens 1 (ZO1/TJP1). The interaction between miRNAs and L. casei LC01 acting in IECs was investigated through transfection of RNA oligoribonucleotides and pcDNA 3.1 plasmid. The results are as follows: 1) L. casei LC01 decreased the expression of miR-144 and FD4 and promoted OCLN and ZO1 expression in IECs; 2) L. casei LC01 enhanced the barrier function of IECs via downregulation of miR-144 and upregulation of OCLN and ZO1; 3) Under L. casei LC01 treatment, OCLN and ZO1 overexpression could partially eliminate the promoting effect of miR-144 on intestinal permeability in IECs. Our results demonstrate that L. casei LC01 regulates intestinal permeability of IECs through miR-144 targeting of OCLN and ZO1. L. casei LC01 can be a possible therapeutic target for managing dysfunction of the intestinal epithelial barrier.

돼지에서 TRAF4 유전자 특성 및 Tight junction 관련 기능 분석 (Characterization of TRAF4 mRNA and Functions related to tight junction in pig)

  • 윤정희;황인설;황성수;박미령
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.216-222
    • /
    • 2020
  • Tumor necrosis factor receptor associated factor 4 (TRAF4)는 사람의 유방암에서 과발현 되며, 암세포전이, ROS 및 세포 극성 형성 등에 관여하는 것으로 알려져 있다. 그러나 돼지에서는 아직까지 그 기능과 특성에 대한 연구가 보고 된 바 없다. 따라서 본 연구에서는 돼지 TRAF4의 mRNA 전장서열을 분석하고, 그 기능과 특성을 알아보고자 수행되었다. TRAF4의 전장서열을 밝히기 위해 돼지 신장유래세포(pK15)에서 total RNA 추출하여 RACE (Rapid Amplification of cDNA ends) PCR을 수행하였다. 2,030 염기쌍의 mRNA 전장서열을 분석하였고, 470개의 아미노산으로 구성 되어 있는 것을 확인하였다. 사람과 쥐의 Homology를 분석한 결과 각각 93 % 그리고 90 %의 유사도를 가지며, 사람과는 8개, 쥐와는 12개의 아미노산 차이가 있음을 확인하였다. qPCR을 통하여 TRAF4, CLDN4, OCLN 그리고 TJP1의 발현을 분석한 결과 세포의 confluency 정도에 따라 발현이 다르게 나타남을 확인하였고, 세포가 40% 증식한 그룹 보다 60 %와 80 % 이상 증식 한 그룹에서 유의적으로 높게 나타났다. 또한 TRAF4의 기능을 확인하기 위하여 TRAF4 siRNA 처리 한 결과 TRAF4와 tight junction 관련 유전자가 낮게 발현됨을 관찰하였다. 따라서 사람과 마우스와 같이 돼지에서도 TRAF4가 발현되며, 세포-세포 간 중요한 역할을 하는 tight junction에 관여하는 것으로 사료된다.

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • 한국동물생명공학회지
    • /
    • 제36권4호
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Malavige Romesha Chandanee;Sang-Myeong Lee;Jung Min Heo;Young-Joo Yi
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1403-1413
    • /
    • 2023
  • Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.