DOI QR코드

DOI QR Code

Effect of Intestinal Tight Junction Protein Expression on Growth Performance for Eco-friendly Broiler Production: Meta-analysis

친환경 육계 생산을 위한 장 점막 밀접 접합 단백질의 발현량 조절이 생산성에 미치는 효과: Meta-analysis

  • 전은정 (전북대학교 축산학과) ;
  • 박명선 (전북대학교 축산학과) ;
  • 한재규 (전북대학교 축산학과) ;
  • 김정용 (전북대학교 축산학과) ;
  • 안성일 (전북대학교 농업생명과학대학 동물자원과학과)
  • Received : 2021.01.20
  • Accepted : 2021.02.19
  • Published : 2021.02.27

Abstract

In this study, a meta-analysis was performed to determine the correlation between the expression of tight junction protein in the intestine and the productivity of broiler chickens. A total of 9 papers were selected in which the result values consisted of the mean and standard deviation value, and the standardized mean difference was calculated to compare the mean of the control and treatment groups. A meta-regression test was conducted to determine the effect of each type of tight junction protein. The TJPs observed in each study were claudin1, claudin2, claudin3, occludin, ZO1, ZO2, etc., and the indicators to indicate the productivity of broilers were body weight gain (BWG), feed intake (FI), and feed conversion rate (FCR), average daily feed intake (ADFI), average daily gain (ADG), and feed/gain ratio (FPG). Although there are differences depending on the type of TJP, it was found that the change in expression level had a close effect on the productivity of broilers. In particular, occludin significantly correlated with body weight gain, feed intake, and feed conversion rate. Based on the results of this study, a study on a method to effectively increase the expression level of TJP is expected to contribute to improving the productivity of broilers and producing safe livestock products.

본 연구에서는 meta-analysis를 통해 TJP의 발현량과 육계의 생산성 간의 상관관계를 살펴보았다. TJP의 발현량은 생산성의 향상과 밀접한 관계가 있는 것으로 나타났으며, 특히 occludin의 발현이 육계의 생산성과 가장 큰 상관관계를 보이는 것으로 나타났다. Occludin 발현량 조절과 장 점막 건강이 육계 생산성 향상을 위한 영양 관리 전략 지표로 활용될 수 있을 것이다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1C1C1010982).

References

  1. Ahn, S. I., S. B. Cho, and N. J. Choi. 2020. Effect of dietary probiotics on colon length in an inflammatory bowel disease-induced murine model: A meta-analysis. J. Dairy Sci. 103(2): 1807-1819. https://doi.org/10.3168/jds.2019-17356
  2. Anderson, J. M. and C. M. Van Itallie. 1995. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269(4): G467-G475. https://doi.org/10.1152/ajpgi.1995.269.4.G467
  3. Borenstein, M., L. V. Hegdes, J. P. T. Higgins, and H. R. Rothstein. 2011. Introduction to Meta-Analysis. John Wiley & Sons. pp. 3-14.
  4. Bruewer, M., S. Samarin, and A. Nusrat. 2006. Inflammatory bowel disease and the apical junctional complex. Ann. NY. Acad. Sci. 1072(1): 242-252. https://doi.org/10.1196/annals.1326.017
  5. Burkholder, K. M., K. L. Thompson, M. E. Einstein, T. J. Applegate, and J. A. Patterson. 2008. Influence of stressors on normal intestinal microbiota, intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult. Sci. 87(9): 1734-1741. https://doi.org/10.3382/ps.2008-00107
  6. Caffarelli, C., G. Cavagni, I. S. Menzies, P. Bertolini, and D. J. Atherton. 1993. Elimination diet and intestinal permeability in atopic eczema: a preliminary study. Clin. Exp. Allergy. 23(1): 28-31. https://doi.org/10.1111/j.1365-2222.1993.tb02480.x
  7. Castro, F. L. S., Y. H. Tompkins, R. Pazdro, and W. K. Kim. 2020. The effects of total sulfur amino acids on the intestinal health status of broilers challenged with Eimeria spp. Poult. Sci. 99(10): 5027-5036. https://doi.org/10.1016/j.psj.2020.06.055
  8. Cereijido, M., L. Gonzalez-Mariscal, G. Avila, and R. G. Contreras. 1988. Tight junctions. CRC Crit. Rev. Anat. Sci. 111(5): 171-192.
  9. Chen, T., X. Liu, L. Ma, W. He, W. Li, Y. Cao, and Z. Liu. 2014. Food allergens affect the intestinal tight junction permeability in inducing intestinal food allergy in rats. Asian Pac. J. Allergy Immunol. 32(4): 345-353. https://doi.org/10.12932/AP0443.32.4.2014
  10. Cheng Y. F., Y. P. Chen, R. Chen, R. Su, Q. Zhang, Q. F. He, K. Wang, C. Wen, and Y. M. Zhou. 2019. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult. Sci. 98(10): 4767-4776. https://doi.org/10.3382/ps/pez192
  11. Cho, U. M. and H. S. Hwang. 2017. Anti-inflammatory effects of rebaudioside A in LPS-stimulated RAW264.7 macrophage cells. J. Soc. Cosmet. Sci. Korea. 43(2): 157-164. https://doi.org/10.15230/SCSK.2017.43.2.157
  12. DeMeo, M., E. A. Mutlu, A. Keshavarzian, and M. C. Tobin. 2002. Intestinal permeation and gastrointestinal disease. J. Clin Gastroenterol. 34(4): 385-396. https://doi.org/10.1097/00004836-200204000-00003
  13. Deng, X., Z. Li, and W. Zhang. 2012. Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol. 30(1): 311-315. https://doi.org/10.1016/j.fm.2011.11.001
  14. Dong, Y., J. Lei, and B. Zhang. 2020. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci. 99(10): 4892-4903. https://doi.org/10.1016/j.psj.2020.06.028
  15. Egger, M. and G. D. Smith. 1997. Meta-analysis. Potentials and promise. BMJ. 315(7119): 1371-1374.
  16. Gheisar, M. M., A. Hosseindoust, and I. H. Kim. 2015. Evaluating the effect of microencapsulated blends of organic acids and essential oils in broiler chickens diet. J. Appl. Poult. Res. 24(4): 511-519. https://doi.org/10.3382/japr/pfv063
  17. Gonzalez-Mariscal, L., A. Betanzos, P. Nava, and B. E. Jaramillo. 2003. Tight junction proteins. Prog. Biophys. Mol. Biol. 81(1): 1-44. https://doi.org/10.1016/S0079-6107(02)00037-8
  18. Goo, D., J. H. Kim, H. S. Choi, G. H. Park, G. P. Han, and D. Y. Kil. 2019a. Effect of stocking density and sex on growth performance, meat quality, and intestinal barrier function in broiler chickens. Poult. Sci. 98(3): 1153-1160. https://doi.org/10.3382/ps/pey491
  19. Goo, D., J. H. Kim, G. H. Park, J. B. Delos Reyes, and D. Y. Kil. 2019b. Effect of stocking density and dietary tryptophan on growth performance and intestinal barrier function in broiler chickens. Poult. Sci. 98(10): 4504-4508. https://doi.org/10.3382/ps/pez215
  20. Groschwit, K. R. and S. P. Hogan. 2009. Intestinal barrier function: molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124(1): 3-20. https://doi.org/10.1016/j.jaci.2009.05.038
  21. Laudat, A., P. Arnaud, A. Napoly, and F. Brion. 1994. The intestinal permeability test applied to the diagnosis of food allergy in paediatrics. West Indian Med. J. 43(3): 87-88.
  22. Ma, T. and J. Madara. 2006. Tight Junctions and the intestinal barrier. In: Johnson, R., editor. Textbook of Gastrointestinal Physiology. Burlington, Ma: Elsevier Academic Press. pp. 1559-1594.
  23. Matter, K., S. Aijaz, A. Tsapara, and M. S. Balda. 2005. Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr. Opin. Cell Biol. 17(5): 453-458. https://doi.org/10.1016/j.ceb.2005.08.003
  24. Mohamed F. F., M. M. Hady, N. F. Kamel, and N. M. Ragaa. 2020. The impact of exogenous dietary nucleotides in ameliorating Clostridium perfringens infection and improving intestinal barriers gene expression in broiler chicken. Vet. Anim. Sci. 10: 100130. https://doi.org/10.1016/j.vas.2020.100130
  25. Noble Jr, J. H. 2006. Meta-analysis: Methods, strengths, weaknesses, and political uses. J Lab Clin Med. 147(1): 7-20. https://doi.org/10.1016/j.lab.2005.08.006
  26. Nusrat, A., J. R. Turner, and J. L. Madara. 2000. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am. J. Physiol. 279(1): G851-G857.
  27. Osho, S. O. and O. Adeola. 2020. Chitosan oligosaccharide supplementation alleviates stress stimulated by in-feed dexamethasone in broiler chickens. Poult. Sci. 99(4): 2061-2067. https://doi.org/10.1016/j.psj.2019.11.047
  28. Osho, S. O., W. W. Xiao, and O. Adeola. 2019. Response of broiler chickens to dietary soybean bioactive peptide and coccidia challenge. Poult. Sci. 98(11): 5669-5678. https://doi.org/10.3382/ps/pez346
  29. R Development Core Team. 2010. R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing. Retrived from http://www.R-project.org.
  30. Schluter, H., R. Wepf, I. Moll, and W. W. Franke. 2004. Sealing the live part of the skin: The integrated meshwork of desmosomes, tight junctions and curvilinear ridge structures in the cells of the uppermost granular layer of the human epidermis. Eur. J. Cell Biol. 83 (11-12): 655-665. https://doi.org/10.1078/0171-9335-00434
  31. Schneeberger, E. E. and R. D. Lynch. 2004. The tight junction: A multifunctional complex. Am. J. Physiol. Cell Physiol. 286(6): C1213-C1228. https://doi.org/10.1152/ajpcell.00558.2003
  32. Secondulfo, M., D. Iafusco, R. Carratu, L. deMagistris, A. Sapone, M. Generoso, A. Mezzogiorno, F. C. Sasso, M. Carteni, R. De Rosa, F. Prisco, and V. Esposito. 2004. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig. Liver Dis. 36(1): 35-45. https://doi.org/10.1016/j.dld.2003.09.016
  33. Shen, L. and J. R. Turner. 2006. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am. J. Physiol. Gastrointest. Liver Physiol. 290(4): G577-G582. https://doi.org/10.1152/ajpgi.00439.2005
  34. Shen, L., C. R. Weber, D. R. Raleigh, D. Yu, and J. R. Turner. 2011. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73: 283-309. https://doi.org/10.1146/annurev-physiol-012110-142150
  35. Steed, E., M. S. Balda, and K. Matter. 2010. Dynamics and functions of tight junctions. Trends Cell. Biol. 20(3): 142-149. https://doi.org/10.1016/j.tcb.2009.12.002
  36. Stefanello, C., D. P. Rosa, Y. K. Dalmoro, A. L. Segatto, M. S. Vieira, M. L. Moraes, and E. Santin. 2020. Protected blend of organic acids and essential oils improves growth performance, nutrient digestibility, and intestinal health of broiler chickens undergoing an intestinal challenge. Front. Vet. Sci. 6: 491-500. https://doi.org/10.3389/fvets.2019.00491
  37. Suzuki, T. 2020. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Anim. Sci. J. 91(1): e13357. https://doi.org/10.1111/asj.13357
  38. Swaggerty, C. L., R. J. Arsenault, C. Johnson, A. Piva, and E. Grilli. 2020. Dietary supplementation with a microencapsulated blend of organic acids and botanicals alters the kinome in the ileum and jejunum of Gallus gallus. Plos one. 15(7): e0236950. https://doi.org/10.1371/journal.pone.0236950
  39. Tan, L., D. Rong, Y. Yang, and B. Zhang. 2019. The effect of oxidized fish oils on growth performance, oxidative status, and intestinal barrier function in broiler chickens. J. Appl. Poult. Res. 28(1): 31-41. https://doi.org/10.3382/japr/pfy013
  40. Tugnoli, B., G. Giovagnoni, A. Piva, and E. Grilli. 2020. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animal. 10(1): 134. https://doi.org/10.3390/ani10010134
  41. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9(11): 799-809. https://doi.org/10.1038/nri2653
  42. Ulluwishewa, D., R. C. Anderson, W. C. McNabb, P. J. Moughan, J. M. Wells, and N. C. Roy. 2011. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 141(5): 769-776. https://doi.org/10.3945/jn.110.135657
  43. Del Vesco, A. P., A. de Souza Khatlab, T. P. Santana, P. C. Pozza, M. A. M. Soares, C. O. Brito, and L. T. Barbosa. 2020. Heat stress effect on the intestinal epithelial function of broilers fed methionine supplementation. Livest. Sci. 240: 104-152.
  44. Yegani, M. and D. Korver. 2008. Factors Affecting Intestinal Health in Poultry. Poult. Sci. 87(10): 2052-2063. https://doi.org/10.3382/ps.2008-00091
  45. Zhang, C., X. H. Zhao, L. Yang, X. Y. Chen, R. S. Jiang, S. H. Jin, and Z. Y. Geng. 2017. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 96(12): 4325-4332. https://doi.org/10.3382/ps/pex266