DOI QR코드

DOI QR Code

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Kim, Minjeong (Division of Translational Science, Research Institute, National Cancer Center) ;
  • Choi, Beom K. (Biomedicine Production Branch, Research Institute, National Cancer Center) ;
  • Kim, Dae Hong (Division of Convergence Technology, Research Institute, National Cancer Center) ;
  • Choi, Inho (Department of Medical Biotechnology, Yeungnam University) ;
  • You, Hye Jin (Division of Translational Science, Research Institute, National Cancer Center)
  • Received : 2021.05.18
  • Accepted : 2021.09.14
  • Published : 2021.11.30

Abstract

Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Keywords

Acknowledgement

We thank Mi Sun Park (V.M.D.) and Bo Ra Kim (V.M.D.) of Animal Laboratory (National Cancer Center) and Dr. Se Hun Kang and colleagues of National Cancer Center Animal Molecular Imaging Team, Dr. Eun Kyung Hong, professional pathologist, Department of Pathology, National Cancer Center Hospital, Dr. Jong Kwang Kim of NCC Omics Core Center for their expert assistance and helpful suggestions. We also thank the NCC sarcoma research group (National Cancer Center) for their advice. This research was funded by National Cancer Center grant NCC-1710252 (to H.J.Y.), NCC-1810865 (to H.J.Y.), NCC2110521 (to H.J.Y.) and by the Korean Medical Device Development Fund Grant funded by the Korean Government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) NTIS-202012E12-02 (to D.H.K.).

References

  1. Babichev, Y., Kabaroff, L., Datti, A., Uehling, D., Isaac, M., Al-Awar, R., Prakesch, M., Sun, R.X., Boutros, P.C., Venier, R., et al. (2016). PI3K/AKT/mTOR inhibition in combination with doxorubicin is an effective therapy for leiomyosarcoma. J. Transl. Med. 14, 67. https://doi.org/10.1186/s12967-016-0814-z
  2. Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J.R., Maciejewski, A., and Wishart, D.S. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44(W1), W147-W153. https://doi.org/10.1093/nar/gkw419
  3. Barretina, J., Taylor, B.S., Banerji, S., Ramos, A.H., Lagos-Quintana, M., Decarolis, P.L., Shah, K., Socci, N.D., Weir, B.A., Ho, A., et al. (2010). Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat. Genet. 42, 715-721. https://doi.org/10.1038/ng.619
  4. Cancer Genome Atlas Research Network (2017). Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 171, 950-965.e28. https://doi.org/10.1016/j.cell.2017.10.014
  5. Chae, Y.K., Chang, S., Ko, T., Anker, J., Agte, S., Iams, W., Choi, W.M., Lee, K., and Cruz, M. (2018). Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci. Rep. 8, 2918. https://doi.org/10.1038/s41598-018-21061-1
  6. Chibon, F., Lagarde, P., Salas, S., Perot, G., Brouste, V., Tirode, F., Lucchesi, C., de Reynies, A., Kauffmann, A., Bui, B., et al. (2010). Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nat. Med. 16, 781-787. https://doi.org/10.1038/nm.2174
  7. Chudasama, P., Mughal, S.S., Sanders, M.A., Hubschmann, D., Chung, I., Deeg, K.I., Wong, S.H., Rabe, S., Hlevnjak, M., Zapatka, M., et al. (2018). Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 9, 144. https://doi.org/10.1038/s41467-017-02602-0
  8. Cloutier, J.M. and Charville, G.W. (2019). Diagnostic classification of soft tissue malignancies: a review and update from a surgical pathology perspective. Curr. Probl. Cancer 43, 250-272. https://doi.org/10.1016/j.currproblcancer.2019.05.006
  9. Dancsok, A.R., Gao, D., Lee, A.F., Steigen, S.E., Blay, J.Y., Thomas, D.M., Maki, R.G., Nielsen, T.O., and Demicco, E.G. (2020). Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology 9, 1747340. https://doi.org/10.1080/2162402x.2020.1747340
  10. Dwyer, A.R., Greenland, E.L., and Pixley, F.J. (2017). Promotion of tumor invasion by tumor-associated macrophages: the role of CSF-1-activated phosphatidylinositol 3 kinase and Src family kinase motility signaling. Cancers (Basel) 9, 68. https://doi.org/10.3390/cancers9060068
  11. Fanning, A.S., Jameson, B.J., Jesaitis, L.A., and Anderson, J.M. (1998). The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J. Biol. Chem. 273, 29745-29753. https://doi.org/10.1074/jbc.273.45.29745
  12. Fletcher, C.D. (2014). The evolving classification of soft tissue tumours - an update based on the new 2013 WHO classification. Histopathology 64, 2-11. https://doi.org/10.1111/his.12267
  13. Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1. https://doi.org/10.1126/scisignal.2004088
  14. Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics 19, 534. https://doi.org/10.1186/s12859-018-2486-6
  15. George, S., Miao, D., Demetri, G.D., Adeegbe, D., Rodig, S.J., Shukla, S., Lipschitz, M., Amin-Mansour, A., Raut, C.P., Carter, S.L., et al. (2017). Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity 46, 197-204. https://doi.org/10.1016/j.immuni.2017.02.001
  16. Grivennikov, S.I., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883-899. https://doi.org/10.1016/j.cell.2010.01.025
  17. Guo, X., Jo, V.Y., Mills, A.M., Zhu, S.X., Lee, C.H., Espinosa, I., Nucci, M.R., Varma, S., Forgo, E., Hastie, T., et al. (2015). Clinically relevant molecular subtypes in leiomyosarcoma. Clin. Cancer Res. 21, 3501-3511. https://doi.org/10.1158/1078-0432.CCR-14-3141
  18. Gyori, D., Lim, E.L., Grant, F.M., Spensberger, D., Roychoudhuri, R., Shuttleworth, S.J., Okkenhaug, K., Stephens, L.R., and Hawkins, P.T. (2018). Compensation between CSF1R+ macrophages and Foxp3+ Treg cells drives resistance to tumor immunotherapy. JCI Insight 3, e120631. https://doi.org/10.1172/jci.insight.120631
  19. Hegde, P.S. and Chen, D.S. (2020). Top 10 challenges in cancer immunotherapy. Immunity 52, 17-35. https://doi.org/10.1016/j.immuni.2019.12.011
  20. Helman, L.J. and Meltzer, P. (2003). Mechanisms of sarcoma development. Nat. Rev. Cancer 3, 685-694. https://doi.org/10.1038/nrc1168
  21. Hoos, A., Stojadinovic, A., Mastorides, S., Urist, M.J., Polsky, D., Di Como, C.J., Brennan, M.F., and Cordon-Cardo, C. (2001). High Ki-67 proliferative index predicts disease specific survival in patients with high-risk soft tissue sarcomas. Cancer 92, 869-874. https://doi.org/10.1002/1097-0142(20010815)92:4<869::AID-CNCR1395>3.0.CO;2-U
  22. Kim, C., Kim, I.H., Kim, S.I., Kim, Y.S., Kang, S.H., Moon, S.H., Kim, T.S., and Kim, S.K. (2011). Comparison of the intraperitoneal, retroorbital and per oral routes for F-18 FDG administration as effective alternatives to intravenous administration in mouse tumor models using small animal PET/CT studies. Nucl. Med. Mol. Imaging 45, 169-176. https://doi.org/10.1007/s13139-011-0087-7
  23. Kim, J., Kim, J.H., Kang, H.G., Park, S.Y., Yu, J.Y., Lee, E.Y., Oh, S.E., Kim, Y.H., Yun, T., Park, C., et al. (2018). Integrated molecular characterization of adult soft tissue sarcoma for therapeutic targets. BMC Med. Genet. 19(Suppl 1), 216. https://doi.org/10.1186/s12881-018-0722-6
  24. Kumar, V., Donthireddy, L., Marvel, D., Condamine, T., Wang, F., Lavilla-Alonso, S., Hashimoto, A., Vonteddu, P., Behera, R., Goins, M.A., et al. (2017). Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell 32, 654-668.e5. https://doi.org/10.1016/j.ccell.2017.10.005
  25. Lee, E.Y., Yu, J.Y., Paek, A.R., Lee, S.H., Jang, H., Cho, S.Y., Kim, J.H., Kang, H.G., Yun, T., Oh, S.E., et al. (2020). Targeting TJP1 attenuates cell-cell aggregation and modulates chemosensitivity against doxorubicin in leiomyosarcoma. J. Mol. Med. (Berl.) 98, 761-773. https://doi.org/10.1007/s00109-020-01909-8
  26. Lee, S.H., Paek, A.R., Yoon, K., Kim, S.H., Lee, S.Y., and You, H.J. (2015). Tight junction protein 1 is regulated by transforming growth factor-beta and contributes to cell motility in NSCLC cells. BMB Rep. 48, 115-120. https://doi.org/10.5483/BMBRep.2015.48.2.035
  27. Lin, H.H., Faunce, D.E., Stacey, M., Terajewicz, A., Nakamura, T., Zhang-Hoover, J., Kerley, M., Mucenski, M.L., Gordon, S., and Stein-Streilein, J. (2005). The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J. Exp. Med. 201, 1615-1625. https://doi.org/10.1084/jem.20042307
  28. Martin, T.A. and Jiang, W.G. (2009). Loss of tight junction barrier function and its role in cancer metastasis. Biochim. Biophys. Acta 1788, 872-891. https://doi.org/10.1016/j.bbamem.2008.11.005
  29. Mata, M. and Gottschalk, S. (2015). Adoptive cell therapy for sarcoma. Immunotherapy 7, 21-35. https://doi.org/10.2217/imt.14.98
  30. Mlecnik, B., Bindea, G., Angell, H.K., Maby, P., Angelova, M., Tougeron, D., Church, S.E., Lafontaine, L., Fischer, M., Fredriksen, T., et al. (2016). Integrative analyses of colorectal cancer show Immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698-711. https://doi.org/10.1016/j.immuni.2016.02.025
  31. Nirmal, A.J., Regan, T., Shih, B.B., Hume, D.A., Sims, A.H., and Freeman, T.C. (2018). Immune cell gene signatures for profiling the microenvironment of solid tumors. Cancer Immunol. Res. 6, 1388-1400. https://doi.org/10.1158/2326-6066.CIR-18-0342
  32. Paek, A.R., Mun, J.Y., Hong, K.M., Lee, J., Hong, D.W., and You, H.J. (2017). Zinc finger protein 143 expression is closely related to tumor malignancy via regulating cell motility in breast cancer. BMB Rep. 50, 621-627. https://doi.org/10.5483/BMBRep.2017.50.12.177
  33. Paek, A.R., Mun, J.Y., Jo, M.J., Choi, H., Lee, Y.J., Cheong, H., Myung, J.K., Hong, D.W., Park, J., Kim, K.H., et al. (2019). The role of ZNF143 in breast cancer cell survival through the NAD(P)H quinone dehydrogenase 1(-) p53(-)Beclin1 axis under metabolic stress. Cells 8, 296. https://doi.org/10.3390/cells8040296
  34. Petitprez, F., de Reynies, A., Keung, E.Z., Chen, T.W., Sun, C.M., Calderaro, J., Jeng, Y.M., Hsiao, L.P., Lacroix, L., Bougouin, A., et al. (2020). B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556-560. https://doi.org/10.1038/s41586-019-1906-8
  35. Pyonteck, S.M., Akkari, L., Schuhmacher, A.J., Bowman, R.L., Sevenich, L., Quail, D.F., Olson, O.C., Quick, M.L., Huse, J.T., Teijeiro, V., et al. (2013). CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264-1272. https://doi.org/10.1038/nm.3337
  36. Quail, D.F., Bowman, R.L., Akkari, L., Quick, M.L., Schuhmacher, A.J., Huse, J.T., Holland, E.C., Sutton, J.C., and Joyce, J.A. (2016). The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science 352, aad3018. https://doi.org/10.1126/science.aad3018
  37. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47(W1), W191-W198. https://doi.org/10.1093/nar/gkz369
  38. Ren, W., Korchin, B., Lahat, G., Wei, C., Bolshakov, S., Nguyen, T., Merritt, W., Dicker, A., Lazar, A., Sood, A., et al. (2008). Combined vascular endothelial growth factor receptor/epidermal growth factor receptor blockade with chemotherapy for treatment of local, uterine, and metastatic soft tissue sarcoma. Clin. Cancer Res. 14, 5466-5475. https://doi.org/10.1158/1078-0432.ccr-08-0562
  39. Rusakiewicz, S., Semeraro, M., Sarabi, M., Desbois, M., Locher, C., Mendez, R., Vimond, N., Concha, A., Garrido, F., Isambert, N., et al. (2013). Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res. 73, 3499-3510. https://doi.org/10.1158/0008-5472.CAN-13-0371
  40. Sanchez-Vega, F., Mina, M., Armenia, J., Chatila, W.K., Luna, A., La, K.C., Dimitriadoy, S., Liu, D.L., Kantheti, H.S., Saghafinia, S., et al. (2018). Oncogenic signaling pathways in The Cancer Genome Atlas. Cell 173, 321-337.e10. https://doi.org/10.1016/j.cell.2018.03.035
  41. Sorbye, S.W., Kilvaer, T., Valkov, A., Donnem, T., Smeland, E., Al-Shibli, K., Bremnes, R.M., and Busund, L.T. (2011). Prognostic impact of lymphocytes in soft tissue sarcomas. PLoS One 6, e14611. https://doi.org/10.1371/journal.pone.0014611
  42. Strowig, T., Rongvaux, A., Rathinam, C., Takizawa, H., Borsotti, C., Philbrick, W., Eynon, E.E., Manz, M.G., and Flavell, R.A. (2011). Transgenic expression of human signal regulatory protein alpha in Rag2-/-gamma(c)-/- mice improves engraftment of human hematopoietic cells in humanized mice. Proc. Natl. Acad. Sci. U. S. A. 108, 13218-13223. https://doi.org/10.1073/pnas.1109769108
  43. Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T.H., Porta-Pardo, E., Gao, G.F., Plaisier, C.L., Eddy, J.A., et al. (2018). The immune landscape of cancer. Immunity 48, 812-830.e14. https://doi.org/10.1016/j.immuni.2018.03.023
  44. Tuomi, S., Mai, A., Nevo, J., Laine, J.O., Vilkki, V., Ohman, T.J., Gahmberg, C.G., Parker, P.J., and Ivaska, J. (2009). PKCepsilon regulation of an alpha5 integrin-ZO-1 complex controls lamellae formation in migrating cancer cells. Sci. Signal. 2, ra32. https://doi.org/10.1126/scisignal.2000135
  45. Verma, V., Paek, A.R., Choi, B.K., Hong, E.K., and You, H.J. (2019). Loss of zinc-finger protein 143 contributes to tumour progression by interleukin-8-CXCR axis in colon cancer. J. Cell. Mol. Med. 23, 4043-4053. https://doi.org/10.1111/jcmm.14290
  46. Vesely, M.D., Kershaw, M.H., Schreiber, R.D., and Smyth, M.J. (2011). Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235-271. https://doi.org/10.1146/annurev-immunol-031210-101324
  47. Zhang, X.D., Baladandayuthapani, V., Lin, H., Mulligan, G., Li, B., Esseltine, D.W., Qi, L., Xu, J., Hunziker, W., Barlogie, B., et al. (2016). Tight junction protein 1 modulates proteasome capacity and proteasome inhibitor sensitivity in multiple myeloma via EGFR/JAK1/STAT3 signaling. Cancer Cell 29, 639-652. https://doi.org/10.1016/j.ccell.2016.03.026
  48. Zhang, Y. and Zhang, Z. (2020). The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 17, 807-821. https://doi.org/10.1038/s41423-020-0488-6
  49. Zhu, Y., Knolhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., Wang-Gillam, A., Goedegebuure, S.P., Linehan, D.C., and DeNardo, D.G. (2014). CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74, 5057-5069. https://doi.org/10.1158/0008-5472.CAN-13-3723