• Title/Summary/Keyword: TJP1

Search Result 7, Processing Time 0.032 seconds

TJP1 Contributes to Tumor Progression through Supporting Cell-Cell Aggregation and Communicating with Tumor Microenvironment in Leiomyosarcoma

  • Lee, Eun-Young;Kim, Minjeong;Choi, Beom K.;Kim, Dae Hong;Choi, Inho;You, Hye Jin
    • Molecules and Cells
    • /
    • v.44 no.11
    • /
    • pp.784-794
    • /
    • 2021
  • Leiomyosarcoma (LMS) is a mesenchymal malignancy with a complex karyotype. Despite accumulated evidence, the factors contributing to the development of LMS are unclear. Here, we investigated the role of tight-junction protein 1 (TJP1), a membrane-associated intercellular barrier protein during the development of LMS and the tumor microenvironment. We orthotopically transplanted SK-LMS-1 cells and their derivatives in terms of TJP1 expression by intramuscular injection, such as SK-LMS-1 Sh-Control cells and SK-LMS-1 Sh-TJP1. We observed robust tumor growth in mice transplanted with LMS cell lines expressing TJP1 while no tumor mass was found in mice transplanted with SK-LMS-1 Sh-TJP1 cells with silenced TJP1 expression. Tissues from mice were stained and further analyzed to clarify the effects of TJP1 expression on tumor development and the tumor microenvironment. To identify the TJP1-dependent factors important in the development of LMS, genes with altered expression were selected in SK-LMS-1 cells such as cyclinD1, CSF1 and so on. The top 10% of highly expressed genes in LMS tissues were obtained from public databases. Further analysis revealed two clusters related to cell proliferation and the tumor microenvironment. Furthermore, integrated analyses of the gene expression networks revealed correlations among TJP1, CSF1 and CTLA4 at the mRNA level, suggesting a possible role for TJP1 in the immune environment. Taken together, these results imply that TJP1 contributes to the development of sarcoma by proliferation through modulating cell-cell aggregation and communication through cytokines in the tumor microenvironment and might be a beneficial therapeutic target.

Tight junction protein 1 is regulated by transforming growth factor-β and contributes to cell motility in NSCLC cells

  • Lee, So Hee;Paek, A Rome;Yoon, Kyungsil;Kim, Seok Hyun;Lee, Soo Young;You, Hye Jin
    • BMB Reports
    • /
    • v.48 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Tight junction protein 1 (TJP1), a component of tight junction, has been reported to play a role in protein networks as an adaptor protein, and TJP1 expression is altered during tumor development. Here, we found that TJP1 expression was increased at the RNA and protein levels in TGF-${\beta}$-stimulated lung cancer cells, A549. SB431542, a type-I TGF-${\beta}$ receptor inhibitor, as well as SB203580, a p38 kinase inhibitor, significantly abrogated the effect of TGF-${\beta}$ on TJP1 expression. Diphenyleneiodonium, an NADPH oxidase inhibitor, also attenuated TJP1 expression in response to TGF-${\beta}$ in lung cancer cells. When TJP1 expression was reduced by shRNA lentiviral particles in A549 cells (A549-sh TJP1), wound healing was much lower than in cells infected with control viral particles. Taken together, these data suggest that TGF-${\beta}$ enhances TJP1 expression, which may play a role beyond structural support in tight junctions during cancer development.

Effect of Intestinal Tight Junction Protein Expression on Growth Performance for Eco-friendly Broiler Production: Meta-analysis (친환경 육계 생산을 위한 장 점막 밀접 접합 단백질의 발현량 조절이 생산성에 미치는 효과: Meta-analysis)

  • Jeon, Eun-Jeong;Park, Myung-Sun;Han, Jae-Kyu;Kim, Joung-Yong;Ahn, Sung-Il
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • In this study, a meta-analysis was performed to determine the correlation between the expression of tight junction protein in the intestine and the productivity of broiler chickens. A total of 9 papers were selected in which the result values consisted of the mean and standard deviation value, and the standardized mean difference was calculated to compare the mean of the control and treatment groups. A meta-regression test was conducted to determine the effect of each type of tight junction protein. The TJPs observed in each study were claudin1, claudin2, claudin3, occludin, ZO1, ZO2, etc., and the indicators to indicate the productivity of broilers were body weight gain (BWG), feed intake (FI), and feed conversion rate (FCR), average daily feed intake (ADFI), average daily gain (ADG), and feed/gain ratio (FPG). Although there are differences depending on the type of TJP, it was found that the change in expression level had a close effect on the productivity of broilers. In particular, occludin significantly correlated with body weight gain, feed intake, and feed conversion rate. Based on the results of this study, a study on a method to effectively increase the expression level of TJP is expected to contribute to improving the productivity of broilers and producing safe livestock products.

Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144 Targeting of OCLN and ZO1

  • Hou, Qiuke;Huang, Yongquan;Wang, Yan;Liao, Liu;Zhu, Zhaoyang;Zhang, Wenjie;Liu, Yongshang;Li, Peiwu;Chen, Xinlin;Liu, Fengbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1480-1487
    • /
    • 2020
  • Our previous report determined that miR-144 is a key regulator of intestinal epithelial permeability in irritable bowel syndrome with diarrhea (IBS-D) rats. Recent evidence has shown that lactobacilli play an important role in the relief of IBS-D symptoms. However, few studies have addressed the mechanisms by which microRNAs and lactobacilli exert their beneficial effects on intestinal epithelial permeability. Hence, to elucidate whether miRNAs and lactobacilli play roles in intestinal epithelial barrier regulation, we compared miRNA expression levels in intestinal epithelial cells (IECs) under Lactobacillus casei (L. casei LC01) treatment. IECs and L. casei LC01 were co-cultured and then subjected to microRNA microarray assay. qRT-PCR, western blot and ELISA were used to detect the expression of occludin (OCLN) and zonula occludens 1 (ZO1/TJP1). The interaction between miRNAs and L. casei LC01 acting in IECs was investigated through transfection of RNA oligoribonucleotides and pcDNA 3.1 plasmid. The results are as follows: 1) L. casei LC01 decreased the expression of miR-144 and FD4 and promoted OCLN and ZO1 expression in IECs; 2) L. casei LC01 enhanced the barrier function of IECs via downregulation of miR-144 and upregulation of OCLN and ZO1; 3) Under L. casei LC01 treatment, OCLN and ZO1 overexpression could partially eliminate the promoting effect of miR-144 on intestinal permeability in IECs. Our results demonstrate that L. casei LC01 regulates intestinal permeability of IECs through miR-144 targeting of OCLN and ZO1. L. casei LC01 can be a possible therapeutic target for managing dysfunction of the intestinal epithelial barrier.

Characterization of TRAF4 mRNA and Functions related to tight junction in pig (돼지에서 TRAF4 유전자 특성 및 Tight junction 관련 기능 분석)

  • Yun, Jeong-hee;Hwang, In-Sul;Hwang, Seongsoo;Park, Mi-Ryung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.216-222
    • /
    • 2020
  • Tumor necrosis factor receptor associated factor 4 (TRAF4) is found to be overexpressed in human breast cancer. It plays a role in cancer metastasis, production of reactive oxygen species, and cell polarity at membranes. The characteristics and functions of TRAF4 in pigs have not yet been identified. As the first step of research, the mRNA sequence of TRAF4 in porcine cells has been determined. To obtain the full-length sequence, rapid amplification of cDNA ends (RACE) has been carried out. Upon cloning, 2,030 bp of nucleotides were found to encode 470 amino acids, and 8 and 12 amino acids were different from those of the human and mouse TRAF4, respectively. The coding region of porcine TRAF4 was shown to be 93% and 90% homologous to human and mouse TRAF4, respectively. qPCR was conducted to determine the relative expression level of TRAF4. TRAF4 expression in pK15 was enhanced by cell-cell contacts. The mRNA levels of CLDN4, OCLN, and TJP1 at 60% and 80% confluency were significantly higher than at 40% confluency. Further, TRAF4 and tight junction-related genes were down-regulated upon treatment with TRAF4 siRNA. Thus, TRAF4 may affect the function of tight junctions in pig.

Traf4 is required for tight junction complex during mouse blastocyst formation

  • Lee, Jian;Choi, Inchul
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.307-313
    • /
    • 2021
  • Traf4 (Tumor necrosis factor Receptor Associated Factor 4) is a member of the tumor necrosis factor receptor (TNFR) - associated factors (TRAFs) family. TRAF4 is overexpressed in tumor cells such as breast cancer and associated with cytoskeleton and membrane fraction. Interestingly, TRAF4 was localized with tight junctions (TJs) proteins including OCLN and TJP1 in mammary epithelial cells. However, the expression patterns and biological function of Traf4 were not examined in preimplantation mouse embryos although Traf4-deficient mouse showed embryonic lethality or various dramatic malformation. In this study, we examined the temporal and spatial expression patterns of mouse Traf4 during preimplantation development by qRT-PCR and immunostaining, and its biological function by using siRNA injection. We found upregulation of Traf4 from the 8-cell stage onwards and apical region of cell - cell contact sites at morula and blastocyst embryos. Moreover, Traf4 knockdown led to defective TJs without alteration of genes associated with TJ assembly but elevated p21 expression at the KD morula. Taken together, Traf4 is required for TJs assembly and cell proliferation during morula to blastocyst transition.

Change in intestinal alkaline phosphatase activity is a hallmark of antibiotic-induced intestinal dysbiosis

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Malavige Romesha Chandanee;Sang-Myeong Lee;Jung Min Heo;Young-Joo Yi
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1403-1413
    • /
    • 2023
  • Objective: Intestinal alkaline phosphatase (IAP) maintains intestinal homeostasis by detoxifying bacterial endotoxins and regulating gut microbiota, and lipid absorption. Antibiotics administered to animals can cause gut dysbiosis and barrier disruption affecting animal health. Therefore, the present study sought to investigate the role of IAP in the intestinal environment in dysbiosis. Methods: Young male mice aged 9 weeks were administered a high dose of antibiotics to induce dysbiosis. They were then sacrificed after 4 weeks to collect the serum and intestinal organs. The IAP activity in the ileum and the level of cytokines in the serum samples were measured. Quantitative real-time polymerase chain reaction analysis of RNA from the intestinal samples was performed using primers for tight junction proteins (TJPs) and proinflammatory cytokines. The relative intensity of IAP and toll-like receptor 4 (TLR4) in intestinal samples was evaluated by western blotting. Results: The IAP activity was significantly lower in the ileum samples of the dysbiosis-induced group compared to the control. The interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha concentrations were significantly higher in the ileum samples of the dysbiosis-induced group. The RNA expression levels of TJP2, claudin-3, and claudin-11 showed significantly lower values in the intestinal samples from the dysbiosis-induced mice. Results from western blotting revealed that the intensity of IAP expression was significantly lower in the ileum samples of the dysbiosis-induced group, while the intensity of TLR4 expression was significantly higher compared to that of the control group without dysbiosis. Conclusion: The IAP activity and relative mRNA expression of the TJPs decreased, while the levels of proinflammatory cytokines increased, which can affect intestinal integrity and the function of the intestinal epithelial cells. This suggests that IAP is involved in mediating the intestinal environment in dysbiosis induced by antibiotics and is an enzyme that can potentially be used to maintain the intestinal environment in animal health care.