• Title/Summary/Keyword: TIME FLOW

Search Result 9,833, Processing Time 0.044 seconds

Study on the Transient Characteristics of the Sensor Tube of a Thermal Mass Flow Meter (열식 질량 유량계 센서관의 과도 특성에 관한 연구)

  • Kim, Dong-Kwon;Han, Il-Young;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.308-313
    • /
    • 2003
  • Thermal mass flow meters (TMFMs) are most widely used for measuring mass flow rates in the semiconductor industry. A TMFM should have a short response time in order to measure the time-varying flow rate rapidly and accurately. Therefore it is important to study transient heat transfer phenomena in the sensor tube of a TMFM that is the most critical part in the TMFM. In the present work, a simple numerical model for transient heat transfer phenomena of the sensor tube of a TMFM is presented. Numerical solutions for the tube and fluid temperatures in a transient state are obtained using the proposed model and compared with experimental results to validate the proposed model. Based on numerical solutions, heat transfer mechanism in a transient state in the sensor tube is explained. Finally, a correlation for predicting the response time of a sensor tube is presented. The correlation is verified by experimental results.

  • PDF

Dynamic evolution characteristics of water inrush during tunneling through fault fracture zone

  • Jian-hua Wang;Xing Wan;Cong Mou;Jian-wen Ding
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.179-187
    • /
    • 2024
  • In this paper, a unified time-dependent constitutive model of Darcy flow and non-Darcy flow is proposed. The influencing factors of flow velocity are discussed, which demonstrates that permeability coefficient is the most significant factor. Based on this, the dynamic evolution characteristics of water inrush during tunneling through fault fracture zone is analyzed under the constant permeability coefficient condition (CPCC). It indicates that the curves of flow velocity and hydrostatic pressure can be divided into typical three stages: approximate high-velocity zone inside the fault fracture zone, velocity-rising zone near the tunnel excavation face and attenuation-low velocity zone in the tunnel. Furthermore, given the variation of permeability coefficient of the fault fracture zone with depth and time, the dynamic evolution of water flow in the fault fracture zone under the variable permeability coefficient condition (VPCC) is also studied. The results show that the time-related factor (α) affects the dynamic evolution distribution of flow velocity with time, the depth-related factor (A) is the key factor to the dynamic evolution of hydrostatic pressure.

Development of Thermal Mass Flow Meter (열전달 질량유량계 개발)

  • Chi, Daesung
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.118-122
    • /
    • 1999
  • Thermal mass flow meter was developed using principle of convective heat transfer. The advantage of thermal mass flow meter is measuring mass flow directly, therefore, it is not required to use densitometer or temperature/pressure and DP gages. The final accuracy of this thermal mass flow meter is $\pm1.0{\%}$ or better, reproducibility is $\pm0.2{\%}$, and the response time is 600 ms. The thermal mass flow meter was developed from a single point to multi-points (maximum is 9 points), and the number of points is determined according to desired accuracy and size of piping/duct. Since this thermal mass flow meter adopted microprocessor based design, it is intrinsically accurate, self-error detectable, and has self-diagnosis function. The applications of this thermal mass flow meter are for measurement and control of HVAC air flow, other gas flow, and liquid flow.

  • PDF

Polynomial Time Algorithms for Solving the Multicommodity Flow Problems on Two Types of Directed Cycles

  • Myung, Young-Soo
    • Management Science and Financial Engineering
    • /
    • v.15 no.1
    • /
    • pp.71-79
    • /
    • 2009
  • This paper considers the two kinds of integer multicommodity flow problems, a feasibility problem and a maximization problem, on two types of directed cycles, a unidirectional and a bidirectional cycle. Both multicommodity flow problems on an undirected cycle have been dealt with by many researchers and it is known that each problems can be solved by a polynomial time algorithm. However, we don't find any result on the directed cycles. Here we show that we can also solve both problems for a unidirectional and a bidirectional cycle in polynomial time.

Development of a Transient Groundwater Flow Model in Pyoseon Watershed of Jeju Island: Use of a Convolution Method (컨벌루션 기법을 이용한 제주도 표선유역 부정류 지하수 흐름 모델 개발)

  • Kim, Seung-Gu;Koo, Min-Ho;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.481-494
    • /
    • 2015
  • Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.

An Optical Flow Based Time-to-Collision Predictor

  • Yamaguchi, T.;Kashiwagi, H.;Harada, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.232-237
    • /
    • 1998
  • This paper describes a new method for estimating time-to-collision which exhibits high tolerance to noise contained in camera images. Time to collision (TTC) is one of the most important parameters available from a camera attached to a mobile machine. TTC indirectly stands far the translation speed of the camera and is usually calculated either from successive images or optical flow by using intimate relationship between TTC and flow divergence. In most cases, however, it is not easy to get accurate optical flow, which makes it difficult to calculate TTC. In this study it is proved that if the target has a smooth surface, the average of divergence over any point-symmetric region on the image is equal to the divergence of the center of the region. It means that required divergence can be calculated by integrating optical flow vectors over a symmetric region. It is expected that in the process of the integration, accidental noise is canceled if they are independent of optical flow and the motion of the camera. Experimental results show that TTC can be estimated regardless of the surface condition. It is also shown that influence of noise is eliminated as the area of integration increases.

  • PDF

FINITE SPEED OF PROPAGATION IN DEGENERATE EINSTEIN BROWNIAN MOTION MODEL

  • HEVAGE, ISANKA GARLI;IBRAGIMOV, AKIF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.108-120
    • /
    • 2022
  • We considered qualitative behaviour of the generalization of Einstein's model of Brownian motion when the key parameter of the time interval of free jump degenerates. Fluids will be characterised by number of particles per unit volume (density of fluid) at point of observation. Degeneration of the phenomenon manifests in two scenarios: a) flow of the fluid, which is highly dispersing like a non-dense gas and b) flow of fluid far away from the source of flow, when the velocity of the flow is incomparably smaller than the gradient of the density. First, we will show that both types of flows can be modeled using the Einstein paradigm. We will investigate the question: What features will particle flow exhibit if the time interval of the free jump is inverse proportional to the density and its gradient ? We will show that in this scenario, the flow exhibits localization property, namely: if at some moment of time t0 in the region, the gradient of the density or density itself is equal to zero, then for some T during time interval [t0, t0 + T] there is no flow in the region. This directly links to Barenblatt's finite speed of propagation property for the degenerate equation. The method of the proof is very different from Barenblatt's method and based on the application of Ladyzhenskaya - De Giorgi iterative scheme and Vespri - Tedeev technique. From PDE point of view it assumed that solution exists in appropriate Sobolev type of space.

An Estimation Methodology of Empirical Flow-density Diagram Using Vision Sensor-based Probe Vehicles' Time Headway Data (개별 차량의 비전 센서 기반 차두 시간 데이터를 활용한 경험적 교통류 모형 추정 방법론)

  • Kim, Dong Min;Shim, Jisup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.17-32
    • /
    • 2022
  • This study explored an approach to estimate a flow-density diagram(FD) on a link in highway traffic environment by utilizing probe vehicles' time headway records. To study empirical flow-density diagram(EFD), the probe vehicles with vision sensors were recruited for collecting driving records for nine months and the vision sensor data pre-processing and GIS-based map matching were implemented. Then, we examined the new EFDs to evaluate validity with reference diagrams which is derived from loop detection traffic data. The probability distributions of time headway and distance headway as well as standard deviation of flow and density were utilized in examination. As a result, it turned out that the main factors for estimation errors are the limited number of probe vehicles and bias of flow status. We finally suggest a method to improve the accuracy of EFD model.

A Preconditioning Method for Two-Phase Flows with Cavitation

  • Shin B.R.;Yamamoto S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.181-182
    • /
    • 2003
  • A preconditioned numerical method for gas-liquid to-phase flow is applied to solve cavitating flow. The present method employs a density based finite-difference method of dual time-stepping integration procedure and Roe's flux difference splitting approximation with MUSCL-TVD scheme. A homogeneous equilibrium cavitation model is used. The method permits simple treatment of the whole gas-liquid two-phase flow field including wave propagation, large density changes and incompressible flow characteristics at low Mach number. By this method, two-dimensional internal flows through a venturi tuve and decelerating cascades are computed and discussed.

  • PDF

A Study on the Wet Type Ultrasonic Flow-meter System Development (습식방식의 초음파 유량계 시스템 개발에 관한 연구)

  • Lee Eung-Suk;Kwon Oh-Hoon;Rho Myung-Hwan;Lee Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1638-1644
    • /
    • 2005
  • This paper suggests fur the study on a fluid velocity measuring system using ultrasonic transducer. In general, the time difference method to measure the distance between transducers has been known. In this paper, the practical technology for manufacturing ultrasonic flow meter system is studied using the time difference method. The ultrasonic transducer was designed and manufactured. The transmission and receiving algorithm for ultrasonic signal was studied. The ultrasonic flow measuring system was experimented in laboratory using a water reservoir for verifying the distance measuring accuracy. Finally, it was tested in flow calibration laboratory for the velocity measuring performance. The system, designed in this study, showed 0.3 mm resolution in distance measurement. For precise flow measurement, a high speed triggering algorithm is required for ultrasonic signal receiving.