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Abstract

This paper describes a new method for estimating
time-to-collision which exhibits high tolerance to noise
contained in camera images.

Time to collision (TTC) is one of the most im-
portant parameters available from a camera attached
to a mobile machine. TTC indirectly stands for the
translation speed of the camera and is usually calcu-
lated either from successive images or optical flow by
using intimate relationship between TTC and flow di-
vergence. In most cases, however, it is not easy to
get accurate optical flow, which makes it difficult to
calculate TTC.

In this study it is proved that if the target has a
smooth surface, the average of divergence over any
point-symmetric region on the image is equal to the
divergence of the center of the region. It means that
required divergence can be calculated by integrating
optical flow vectors over a symmetric region. It is
expected that in the process of the integration, ac-
cidental noise is canceled if they are independent of
optical low and the motion of the camera.

Experimental results show that TTC can be esti-
mated regardless of the surface condition. It is also
shown that influence of noise is eliminated as the area
of integration increases.
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1. Introduction

It is necessary for smart vehicles and robots navigating
in a structurally unconstrained environment to utilize vi-
sual scene of their environment which contains no remark-
able landmark. In such cases, it is important to know the
direction of their own motion, and it is often required to
predict a time to reach an object in front of them. Tem-
poral images acquired by a visual sensor attached to a
mobile robot contain considerable information about its
own motion. In earlier researches, it was shown that this
information can be extracted from a small difference be-
tween successive images[l, 2]. It was, however, difficult
to extract such subtle change from a series of images in
realtime.

Optical flow field taken by a moving camera is a con-
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sequence of its motion relative to the observed object. In
case of navigation, most of surrounding objects are sup-
posed to be stationary and often composed of flat surfaces,
e.g., wall or floor. If the observed object is a planar wall
normal to the optical axis of the camera, it is proved that
time-to-collision (TTC) to the wall can be estimated from
the divergence of optical flow[3, 4] as

2
TTTC = m (1)

Note that TTC is defined as the time to reach the object
if approaching velocity does not change, and it is an es-
sential dynamic motion parameter like velocity and useful
in planning navigation[5].

According to eq. (1), TTC can be calculated only
from a series of motion images without knowing any other
parameters including the distance to the wall and focal
length of camera lens. This method has been limited to
an object with a surface normal to the camera. In this
paper, we try to expand this algorithm to estimate TTC
to a surface with more arbitrary shape.

Optical flow analysis is also expected to play an impor-
tant role in the estimation of direction of self motion[6].
Motion direction is encoded in an image as an emergent
point of motion which is defined as a staring point of all
flow vectors. This singular point is often called focus of
expansion (FOE). We will show that to estimate TTC to
a generalized surface, it is desirable to estimate the FOE
at first.

We have already proposed a method of calculating op-
tical flow vectors from video rate images[7]. But optical
flow computed from images contains inevitable noise so
that TTC estimated from the divergence of optical flow
may become unstable. To avoid this problem, we propose
a noise immune method of estimating flow divergence at
a point using a number of flow vectors in the vicinity of
the point.

2. Preliminaries

System of Coordinates and Relative Motion

The camera coordinate system adopted here is a model
of a pin-hole camera. In this model, each object point
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Fig. 1. System of coordinates for the modeled camera.

(b)

Fig. 2. Relative motion. (a) real motion. (b) apparent motion
viewed from the camera.

(X,Y, Z) in space is mapped by optical system to a point
(z,y) on an image plane. The pin-hole (the node point
of a lens) is located at the origin of the coordinate sys-
tem, and the relation between object and image points
are described as

X
z = f—

Z

Z ®)
y = f'Z_’

where f is the distance between the pin-hole and the im-
age plane (the focal length of the lens). For convenience,
the image plane is modeled as located on the same side of
the object to the origin (see fig. 1).

When a camera is approaching a stationary object (see
fig. 2(a)), the object and its surroundings may be observed
by the camera as if they were approaching the camera. It
is equivalent to the relative motion, where the camera co-
ordinate system is stationary (see fig. 2(b)). In this paper,
coherent translation of all surrounding objects and cam-
era’s translation are regarded as equivalent translation,
for convenience of explanation.

Fig. 3. Relationship between optical flow field and FOE.

Estimation of FOE

When a given point (X,Y, Z) in object space trans-
lates at a velocity (Vx Vi Vz)T, the velocity (vz vy)T
at the corresponding point (z,y) on the image plane is
derived from eq. (2) as

Ve =

Z(Vx —Vz)
1 (3)
E(fVY -yVz).

'Uy =

It is easy to prove from eq. (3) that the time trajecto-
ries of projected points on the image caused by translation
compose a set of lines sharing a single point. This point
is called focus of expansion (FOE) or emergent point of
motion, and is denoted as (z., y.), where

Z = VX
c “7"‘
7 @)
yc - VZ .

It is important that optical low vectors always diverge
from an unique FOE at every moment regardless of dis-
tance to or shape of the object. (see fig. 3)

If the translation vector lies on a line passing the ori-
gin, the projection of this vector on the image corresponds
to the FOE. Therefore, to determine the direction of cam-
era motion, we need to know the FOE.

From the above consideration, to measure the FOE
it is necessary to estimate the most shared point by ex-
trapolated lines of velocity vectors. One crucial problem
is, however, that measured optical flow vectors from ac-
tual images will be stained with noise, and this makes
it difficult to estimate a single sharing point because all
extrapolated lines do not always intersect one point (see
fig. 4).

In this case, optimal estimate can be determined as a
point which has the least sum of square distance from the
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Fig. 4. Schematic diagram of flow vectors and their extrapo-
lated lines in case of ideal (a) or not (b).

lines. The extrapolated line of a velocity vector (vy; 'U,,,-)T
at a point (z;,y:) is described as

vyi(T — T:) = vaily — ¥i)- (5
The distance between a point (z,y) and the line is
di = lvyi(x — 2:) — vai(y — 93)] 6)

vV ”:i + v:i
In this research, we adopt an FOE estimator minimizing

the square sum of distance d;, which is described as

-1

. ( v o Uzilyi
- ‘Um,"l)}!g Vi
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,‘ . Vi + ’in (7)
7 Vg T Uy

3. Extension of TTC Estimation

Estimation of TTC to a Curved Surface

If the surface shape of an object visible from a camera
has no occlusion, the depth to the surface corresponding
to any point on the image can be described as a function
of image coordinates (see fig. 5), i.e.,

Z = Z(z,y). (8)

When the camera translates at velocity (Vx Vy VZ)T,
the divergence of optical flow field on the image plane can
be derived from eq. (3) as

vy  0(1/2)

divy = 7 + -—az—'(fo —zVz)
)] ©)

(b)

(b) flow vectors

Fig. 5. (a) surface with arbitrary shape.
induced from camera motion.

From eq. (4), the second and third term of the right hand
of eq. (9) at FOE (z., ¥.) becomes zero and TTC at this
point is described as

Z, 2

Trre=—5 = =
T Vz  dive,’

(10)

where Z. and div v, are the depth and the divergence at
FOE, respectively.
This equation implies:

o TTC at FOE is described as double of the inverse
of flow divergence.

e This estimator does not depend on the shape of a
surface nor the focal length of a lens and can be
calculated only from the optical flow field observed
on the image plane.

Divergence Estimation from Flow Vectors with
Noise

To calculate divergence of a flow vector field, it is nec-
essary to carry out a kind of differentiation of flow vector.
In most cases, however, measured optical flow is apt to
contain some noise caused by incompleteness of video ap-
paratus or signal conditioner, for example. In general,
random error in flow vector strongly affects the accuracy
of estimated derivative. In this section, we seek for a more
stable estimator of flow divergence.

It can be assumed that there exists a plane which can
approximate the adjacent region on the surface around a
given point (see fig. 6). This plane can be selected as a
tangential plane or least-square fitted plane. If the plane
is described as

from eq. (2) we can get
1
E=p_—_x+qy+f. (12)

fZo
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Fig. 6. Planar approximation of the object surface adjacent to
the viewed point.

Velocity vector on the image plane is derived by sub-

stituting eq. (12) to eq. (3).

Ve =
v =
By differentiating eq. (13) by = and y respectively, flow
divergence proved to be expressed as the following form,

77; (P +ay + £)(fVx —zVz)

. (13)
77, Pz + qy + /)(F Wy —yVz).

divey = —22

1 Vz
—(pVx +qVy) — 3—= +qy). (14
A + Zo(p X t4q Y) fZO(px qy) ( )

Eq. (14) indicates that the divergence of flow field is

a first order function of the location (z,y). It means that
the average of the divergence over a point-symmetric re-
gion S becomes the divergence at the center of the region
P, ie.,

/ divv dz'dy’
s

/ / dz'dy’
s

where the point P(z,y) represents the center of region S
(see fig. 7).

By using Gauss’ divergence theorem, it is shown that
the area integration of divergence over a region can be
expressed as a line integration around the boundary loop
of the region. Therefore, the following relationship is held,

divv(z,y) = (15)

(vzdy’ — vydz’)

% Area(S) ) (16)

divov(z,y) =

The integration region can be selected as whatever fig-
ure it satisfies symmetry, but in practice the region should
be limited to a set of rectangles. This is because the line
integration can be represented by summation of an out-
going component of each velocity, i.e. either v, or +v,,

235

Symmetric area
on image plane

Fig. 7. Perspective projection of an inclined plane onto an
image plane.
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Fig. 8. Principle of divergence estimation by a line integration
along a rectangle boundary.

as shown in eq. (17) (see fig. 8).

f (vdy’ —v,dz’) = / vdy’ + / vyda’
88 1 12

In fig. 9, divergence can be calculated from region S,
S2, S3, and S4. To utilize measured vectors as many as
possible, we can calculate the divergence from all of the
above mentioned regions as

Uzt vy = DUz — 2y
divd(z,y) = R v L D

2 VArea(S;)

4. Experimental Results

(18)

Experimental Conditions and Optical Flow

Images used to these experiments are shown in fig. 10.
These images are 256 x 256 in size and 8 bit monochrome.
Image 1 to 3 are computer-synthesized motion images



W
~~a b s L
Q=13 YT = ®
_x‘-<4 N P x
V“‘ ﬁ\ \\*»'V
) ol "53‘ LY n Y
FF U™
AEERR R
< -y (D)

which represent inclined planes with uniform texture. Im-
age 4 to 6 are captured by a moving CCD camera. For
each image, successive three frames of images are simu-
lated by geometric translation or captured by stop-motion
camera.

Object planes in image 1 and 4 are normal to camera’s
optical axis. In image 2 and 5, object planes have a normal
vector (p ¢ 1)T = (0 71§ 1)T and in image 2 and 6 it is

(Pa )T = (J5 1 1T (cf. eq. (11)).

Note that in the following experiments, optical flow
vectors are calculated from the three successive frames
before and after a nominal image by a method based
on spatio-temporal gradient invariance[7] we proposed be-
fore.

Estimation of FOE

In this experiment, each FOE is estimated from image
1 to 6. View point or the camera center is set to translate
along the optical axis so that the FOE should be at the
origin.

For each image, FOE are calculated from optical flow
vectors within four different regions in size (entire, 127
x 127, 32 x 32, and 16 x 16) by eq. (7). Experimental
results are shown in fig. 11

It is supposed that estimation error in image 1 to 3
mainly due to limited representation of grayness (8bit),
which is equivalent to signal-to-noise ratio of about 47
dB. In image 4 to 6, there is more additional noise from
actual CCD camera and image capturing system, which
results in larger estimation error.

Estimation of TTC

In this experiment, we tried to estimate TTC from the
same images used in the previous experiment. TTC for
the images utilized in this experiment is set to the time
equivalent to 100 frames for image 1 to 3, and 200 frames
for image 4 to 6. Experimental results are shown in fig. 12.
In this figure, estimated TTC versus the size of region
within which velocity vectors are taken into account is
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Image 5

image 3 Image 6

Fig. 10. Images utilized in experiments. Image 1 to 3 are
synthesized and image 4 to 6 are captured.

shown. It is shown that as the size of region increase,
estimated TTC tends to become stable and approach the
correct value.

For synthesized images ((a),(c),{e)), evaluated TTC
converges on the nominal value, while estimated TTC for
captured images is more perturbed ((b),(d),(f)).

5. Discussion

Dependency of FOE error on TTC estimation

Proposed TTC estimator depends on the accuracy of
FOE estimation. Therefore the effect of FOE error on
TTC should be considered.

The systematic error of FOE estimation can be eval-
uated from eq. (9). If estimated FOE have deviation
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Fig. 11. Estimated FOE for different regions. A: from 16 x
16 flow vectors. O: from 32 x 32. +: from 127 x 127. O:
from entire vectors.

(Az, Ay) form true FOE (z.,y.), estimated divergence
is described as
Vz

divy = — 7

(2 + a(lgg 2 ns+ a(lg‘; 2) Ay) . (19)

If Az and Ay are small, eq. (19) becomes

Z
divo = _YZE (2 + log —Z—c-) . (20)
Eq. (20) can give relation between optical flow diver-
gence and TTC at a vicinal point around FOE.

6.

In this paper, we formulated new algorithm to calcu-
late TTC to a surface or plane which is not always normal
to camera’s optical axis.

Experimental results show that this method has the
following advantages,

Conclusions

o It is possible to calculate FOE and TTC to a slanted
surface.

o These estimations can be carried out from images
with noise.
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Fig. 12. Estimated TTC.
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