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ABSTRACT

This paper considers the two kinds of integer multicommodity flow problems, a feasibility problem
and a maximization problem, on two types of directed cycles, a unidirectional and a bidirectional
cycle. Both multicommodity flow problems on an undirected cycle have been dealt with by many
researchers and it is known that each problems can be solved by a polynomial time algorithm. How-
ever, we dort't find any result on the directed cycles. Here we show that we can also solve both prob-
lems for a unidirectional and a bidirectional cycle in polynomial time.
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1. Introduction

A directed multicommodity flow is defined on a directed graph D = (V, A) with a
nonnegative capacity c(a) for each arc acA. We are also given a set of source-sink
pairs (s;, i), ieK where K is the index set of source-sink pairs and a commodity is de-
fined for each source-sink pair. A flow from s: to #i is the flow of commodity i for each
ieK and the flows of all commodities should satisfy the capacity constraint that restricts
the sum of flows routed through an arc under the capacity of the arc. Similarly, an
undirected multicommodity flow is defined on an undirected graph G =(V, E) with a
nonnegative capacity c(e) for each edge ecE. The capacity constraint in an undirected
multicommodity flow limits the sum of flows routed through an edge in both direc-

tions to the capacity of the edge. Therefore, it does not make a difference whichever
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node in a source-sink pair is a source node. So, we use {s;, ti} (si< ti), ieK to denote a
set of source-sink pairs in an undirected graph. We assume that the capacities and
demands are all integers.

Multicommodity flow problems are well known topics in combinatorial optimi-
zation and have good applications such as routing problems in telecommunication
networks and the design of VLSI circuits [11]. Among many problems, two basic ones,
a feasibility problem and a maximization problem, have received much research at-
tention. In a feasibility problem, a nonnegative demand d(i) is given for each source-
sink pair (s;, ) ({si, ti}), i € K. Given c and d, we will say a multicommodity flow is fea-
sible, if the flow of commodity i is d(7) for each i € K and all flows satisfy the capacity
constraint. Then a feasible problem is to find a feasible multicommodity flow. In a
maximization problem, no demand is specified and the goal is to maximize the sum
of all flows subject to the capacity constraint. We will call a feasibilty problem simply
the multicommodity flow problem (MFP) and a maximization problem the maximum
MEFP. If we require an integer flow in each of the two problems, we will call the prob-
lems the integer multicommodity flow problem (IMFP) and the maximum IMFP, re-
spectively. We sometimes add the adjective ‘fractional,” to clarify that no integrality is
required. A feasibility problem can be solved using an algorithm for a maximization
problem. For example, the MFP on a directed graph can be reduced to the maximum
MFP on a directed graph that is extended from the original graph by adding a new
source node si’and an arc of capacity d(i) from si'to s for each ieK. Therefore, in the
resulting maximum MFP, a source-sink pair (s, i) replaces (si, t;) for each ieK and the
MEFP on the original graph is feasible if and only if the maximization problem has the

maximum objective value of ZieK d(i) . The MFP on an undirected graph can be re-

duced to the maximum MFP in the same way. However, in many cases, for example,
when a given graph has a simple structure, it is better to develop an algorithm to ex-
clusively solve a feasibility problem, since the reduced graph no longer has the spe-
cific structure of the original graph. For more details on the definition of multicom-
modity flow problems, refer to [11].

The fractional multicommodity flow problems can be formulated as a linear pro-
gramming (LP) model and the integer ones as an integer programming (IP) model.
An LP algorithm can solve the fractional flow problems in polynomial time but an IP
algorithm can not do in polynomial time in general. However, when a given graph

has a specific structure, we may expect an efficient algorithm other than a general
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purpose IP algorithm that solves the IMFP and the maximum IMFP in polynomial
time. A cut is a useful tool to check the feasibility of a multicommodity flow in both
undirected and directed graphs. Given an undirected graph G = (V, E) and a set S of
vertices, 3(S) represents the set of edges in E with exactly one endpoint in 5 and &5)
is defined as a cut. For a digraph D = (V, A) and a set S  V, 6(S) denotes the set of
arcs {(i, j)eA: i¢S, jeS} and &(S) is a cut. For an undirected graph G = (V, E) and a set
S <V, let d(S) denote 2{d(i): Hs, i} S1 =1, i € K}. Similarly, for a digraph D =(V, A)
and a set S ¢ V, we define d(5) = 2{d(i): Isi¢ S, tie S}. If M is an edge set or an arc set,
we denote zhﬂ (E(@) for N < M by ¢(N). Tt is well known that every multicommodity

flow satisfies the following cut condition: ¢(5 (S)) = d(S), in an undirected graph, and
c(5(S)) = d(S), in a directed graph. It is well known that the computational complexity
of multicommodity flow problems of a given graph is closely related with whether
the cut condition is sufficient for the existence of a fractional, a half-integer, or an in-
teger flow on the graph [11].

In this paper, we consider multicommodity flow problems on two types of di-
rected cycle graphs, a unidirectional cycle and a bidirectional cycle. In a directed cycle,
we have a node set V={1, 2, ---, n} where the indices of nodes are counted modulo #.
We say that an arc (4, i+1) fori=1, -+, n is a clockwise arc and has a clockwise direc-
tion. On the other hand, we say (i+1, i) for i =1, -, n is a counterclockwise arc and
has counterclockwise direction. Let A*= {(1, 2), (2, 3), -, (n-1, n), (n, 1)} and A™={(1,
n), (n,n-1), -+, (3, 2), (2, 1)}. Then a unidirectional cycle is a directed graph G = (V, A)
with A =A*or A=A, ie, a directed cycle whose arcs have the same direction. If we
do not specify the type of an arc set, we assume that a unidirectional cycle is D = (V,
A) with A = A*. A bidirectional cycle is a directed graph D = (V, A) with A= AU A"
An undirected cycle is an undirected graph G = (V, E) with an edge set E = {{1, 2}, {2,
3}, -+, {n-1, n}, {n, 1}}. The demand between s; and # can be routed in either of the two
directions, clockwise and counterclockwise. In an undirected cycle, we say that a flow
is routed in the clockwise (counterclockwise) direction if a flow passes through the node
sequence {s;, siv1, ***, ti, ti} ({8, si1, -+, ti, ti}). In a directed cycle, we say that a flow is
routed in the clockwise (counterclockwise) direction if a flow passes through clock-
wise (counterclockwise) arcs.

In many of the multicommodity flow applications, the network models assume
cycle graphs. For example, the Synchronous Optical Network (SONET) has a struc-

ture of a cycle graph and various multicommodity flow problems arouse in the de-
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sign and the operation of SONET [2, 4, 5, 6, 10, 13, 14, 15]. When focusing on the voice
traffic, the SONET rings are modeled as undirected cycles but when considering the
data traffic, either unidirectional or bidirectional cycles are more suitable SONET mod-
els [14]. Other examples of cycle graphs are also found in the design of VLSI circuits [3,
11, 12]. In an undirected cycle, the MFP has a half-integer solution if and only if the
graph satisfies the cut condition [9]. Based on this nice property, Myung [7] has devel-
oped a linear time algorithm solving the IMFP on an undirected cycle. Myung [8] also
showed that the maximum IMFP on an undirected cycle can be solved in polynomial
time. However no known researches are found for the IMFP and the maximum IMFP
on directed cycles. Note that the MFP and the IMFP on a unidirectional cycle can be
trivially solved since a flow from s; to ti for each i € K is determined in a unique way.
However, the situation is not so simple in the remaining cases.

In this paper, we study a couple of issues not cleared yet. First, we check whether
the cut condition is sufficient for the existence of a fractional, a half-integer, or an in-
teger flow on a bidirectional cycle, and develop a polynomial time algorithm to solve
the IMFP problem. Next, we show that the maximum IMFP on an undirected cycle
and that on a bidirectional cycle can be transformed to a maximum IMFP on a unidi-
rectional cycle and develop a polynomial time algorithm to solve the maximum IMFP

on a unidirectional cycle

2. Integer multicommodity flow problem on a bidirectional cycle

In this section, we consider the IMFP on a bidirectional cycle. Throughout this section,
if we do not specify a given graph, we assume a bidirectional cycle. In an undirected
cycle, the cut condition is sufficient for the existence of a fractional multicommodity
flow and a half-integer flow. This nice property enables a linear time algorithm to
solve the IMFP on an undirected cycle [7]. Here, we show that the cut condition is not
sufficient for the existence of a feasible flow on a bidirectional cycle and also show
that every feasible (fractional) MFP does not always include a half-integer solution.
Although the cut condition does not characterize the feasibility of the MFP, we show
that we can solve the IMFP in polynomial time.

We give two examples of bidirectional cycles, one for showing that the cut condi-

tion is not sufficient and the other for showing that a half-integer flow does not al-
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ways exist in a feasible MFP. In the first example given in Figure 1, the cut condition
holds but no multicommodity flow exists. In the second example given in Figure 2, a
unique feasible flow is to route 1/3 in the clockwise direction and to route the remain-

ing 2/3 in the counterclockwise direction for each commodity.

(S t) d(k)

1, 3) 2
@, 1) 2
3, 2) 2

Figure 1. A bidirectional cycle where the cut condition holds but no multicommodity
flow exists

1 Vae A

(5 t) d(k)
(1, 6) 1
3, 8) 1
(5, 10) 1
@, 3) 1
©, 4) 1

Figure 2. A bidirectional cycle where a fractional flow exists but a half—integer flow does not

Now we develop a polynomial time algorithm to solve the IMFP. Recall that we
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assume that the capacities and demands are all integers in the IMFP. Wan and Yang
[14] developed a polynomial time algorithm for the load balancing problem on a bidi-
rectional cycle where each arc is required to have the same capacity and the objective
is to find the smallest arc capacity that enables the existence of a feasible multicom-
modity flow. We will show that we can solve the IMFP in polynomial time by modi-
fying Wan and Yang's algorithm. Let’s describe the feasibility condition in a mathe-
matical way. As a flow between a source-sink pair can be routed in only two direc-
tions, one variable is enough to represent the flow. For each i€k, let’s define variable
x(7) that denotes the amount of the total demand from from s: to t: routed in the
clockwise direction. Therefore, d(i)-x(i) is the amount of the flow routed in the coun-
terclockwise direction. Let X = {xeR'X!| 0 < x(i) < d(i) for each i € K}, and for a given
multicommodity flow xeX, let ¢(x, a) denotes the sum of the flows routed through an
arc a. Therefore, xe X is a feasible multicommodity flow if g(x, a) < c(a) for each acA.
Wan and Yang [14] introduced a semi-integer multicommodity flow defined as a
multicommodity flow such that the sum of flows routed in the clockwise direction is

an integer. They have shown the following result.

Lemma 1: (Wan and Yang [14]) From any semi-integer multicommodity flow xeX,
we can obtain an integer multicommodity flow y such that g(y, a) < g(x, a)

+1 for each aeA.

Based on the above observation, we develop an algorithm for the IMFP. As all
the capacities are integer values, Lemma 1 implies that if we have a semi-integer solu-
tion for the MFP, we can obtain an integer solution, i.e., a solution of the IMFP. Now

we describe how to find a semi-integer solution. Consider the following LP problem.

(P1) min Zx(i)

st g(x, a)<c(a), VaeA
xeX

Let v(P1) be the optimal objective value of (P1). If (P1) has no feasible solution,
neither does the IMFP. If v(P1) is integer value, the current solution is a semi-integer

multicommodity flow. If v(P1) is fractional value, we add the constraint ziEK x(i)
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> Lv(Pl)J (LmJ denotes the least integer greater than or equal to m) and solve the

resulting LP problem. Note that if the new LP is feasible, the optimal objective value

must be Lv(Pl)J and the optimal solution is a semi-integer solution. If the new LP

has no solution, then (P1) has no semi-integer solution and thus the IMFP is infeasible.

3. Algorithms for the maximum integer multicommodity flow problems

In this section, we consider the maximum IMFP. We first show that we can solve the
problem on an undirected cycle and that on a bidirectional cycle by solving an
equivalent problem on a unidirectional cycle. First consider the case for a bidirec-
tional cycle. Note that a bidirectional cycle is composed of two unidirectional cycles.
It is easy to know that the maximum multicommodity flow of a bidirectional cycle is
the sum of the two maximum multicommodity flows on the two unidirectional cycles
constituting the bidirectional cycle. For the case of an undirected cycle, a unidirec-
tional cycle having the same maximum multicommodity flow can be constructed as
follows. Given an undirected cycle G = (V, E) with V={1,2, -+, nj and E={{1, 2}, {2, 3},
-+, {n-1, n}, {n, 1}}, we associate a unidirectional cycle, D = (V, A) with A ={(1, 2), (2, 3),
-+, (n-1, n), (n, 1)}. In the constructed unidirectional cycle, the capacity of an arc (i, i+1)
fori=1, -, nis set equal to the capacity of an edge {7, i+1} and two commodities (s;,
ti) and (t; si) are associated with each commodity {s;, i}, ieK. Note that a clockwise
(counterclockwise) directional flow between si and # in the given undirected cycle
corresponds to a flow from s: to t (t to i) in the associated unidirectional cycle.

Now we focus on an algorithm to solve the maximum IMFP on a unidirectional
cycle. From now on, if we do not specify a given graph, we assume an unidirectional
cycle. Let x(i) be the amount of flow from si to t: for each ieK and let g(x, a) denote the
sum of the flows routed through an arc 4. Then the maximum IMFP can be formu-

lated as follows:

(P2) max ) x(i)

iek
st g(x, a)<c(a), VacA
xz 0 and integer
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For any pair of source-sink pairs (s;, t) and (sk, &) for i, k € K, if si< sk< t+< t;, then
any flow from s: to #i can be replaced by the flow from st to # without violating the
capacity constraint. We call (s;, #) for i € K a dominated source-sink pair if there exists
(sx, ) for k € K such that si< sk< &< ti. So, all the dominated source-sink pairs can be
deleted without affecting the optimal solution of the maximum IMFP. If we assume
that no dominated source-sink pair is in K and source-sink pairs are sorted such that
s1<52< -+ < 51k, then the constraint matrix of (P2) is a 0-1 matrix called a row circu-
lar matrix where the 1’s in each row appear consecutively (the first and the last col-
umns are considered to be consecutive).

As a direct consequence of Bartholdi et al. [1], the optimal solution of (P2) can be

obtained as follows.

Lemma 2: Let x* is an optimal solution of the LP relaxation of (P2) where the integer
restriction of the variables is removed. Then the optimal solution of (P2) is
as follows: x(1) = x*(1)] and x(i) =Lx*(1) ++-+ x*(i-1)l for i =2, -, IKI.

For the maximum IMFP on an undirected cycle, Myung [8] developed a similar

procedure to solve the problem.
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