• Title/Summary/Keyword: THP-1 cells

Search Result 205, Processing Time 0.028 seconds

Ginsenoside F1 attenuates pirarubicin-induced cardiotoxicity by modulating Nrf2 and AKT/Bcl-2 signaling pathways

  • Yang Zhang;Jiulong Ma;Shan Liu;Chen Chen;Qi Li;Meng Qin;Liqun Ren
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.106-116
    • /
    • 2023
  • Background: Pirarubicin (THP) is an anthracycline antibiotic used to treat various malignancies in humans. The clinical usefulness of THP is unfortunately limited by its dose-related cardiotoxicity. Ginsenoside F1 (GF1) is a metabolite formed when the ginsenosides Re and Rg1 are hydrolyzed. However, the protective effects and underlying mechanisms of GF1 on THP-induced cardiotoxicity remain unclear. Methods: We investigated the anti-apoptotic and anti-oxidative stress effects of GF1 on an in vitro model, using H9c2 cells stimulated by THP, plus trigonelline or AKT inhibitor imidazoquinoxaline (IMQ), as well as an in vivo model using THP-induced cardiotoxicity in rats. Using an enzyme-linked immunosorbent test, the levels of malondialdehyde (MDA), brain natriuretic peptide (BNP), creatine kinase (CK-MB), cardiac troponin (c-TnT), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione (GSH) were determined. Nuclear factor (erythroid-derived2)-like 2 (Nrf2) and the expression of Nrf2 target genes, including heme oxygenase-1 (HO-1), glutathione-S-transferase (Gst), glutamate-cysteine ligase modifier subunit (GCLM), and expression levels of AKT/Bcl-2 signaling pathway proteins were detected using Western blot analysis. Results: THP-induced myocardial histopathological damage, electrocardiogram (ECG) abnormalities, and cardiac dysfunction were reduced in vivo by GF1. GF1 also decreased MDA, BNP, CK-MB, c-TnT, and LDH levels in the serum, while raising SOD and GSH levels. GF1 boosted Nrf2 nuclear translocation and Nrf2 target gene expression, including HO-1, Gst, and GCLM. Furthermore, GF1 regulated apoptosis by activating AKT/Bcl-2 signaling pathways. Employing Nrf2 inhibitor trigonelline and AKT inhibitor IMQ revealed that GF1 lacked antioxidant and anti-apoptotic effects. Conclusion: In conclusion, GF1 was found to alleviate THP-induced cardiotoxicity via modulating Nrf2 and AKT/Bcl-2 signaling pathways, ultimately alleviating myocardial oxidative stress and apoptosis.

Production of pro-inflammatory cytokines by Porphyromonas gingivalis in THP-1 macrophagic cells

  • Choi, Eun-Kyoung;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.87-95
    • /
    • 2009
  • Porphyromonas gingivalis is a major etiologic agent of chronic periodontitis and cytokines produced by macrophages play important roles in the pathogenesis of periodontal diseases. In this study we investigated the cytokine response of phorbol myristate acetatedifferentiated THP-1 cells exposed to P. gingivalis. Compared with the prominent cell wall components of P. gingivalis (lipopolysaccharide and the major fimbrial protein FimA), live P. gingivalis stimulated much higher levels of cytokine production. In addition, whereas low multiplicity of infection challenges (MOI=10) of P. gingivalis 381 stimulated high levels of monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-6 (IL-6), and IL-1${\beta}$, high dose challenges with this bacterium (MOI = 100) resulted in a substantially diminished production of MCP-1 and IL-6. Moreover, high MOI P. gingivalis challenges achieved only low levels of induction of MCP-1 and IL-6 mRNA. The decreased production of MCP-1 and IL-6 appeared to be mediated by P. gingivalis proteases, because high MOI challenges with congenic protease mutant strains of this microorganism (MT10 and MT10W) did not result in a diminished production of MCP-1 and IL-6. Similar to its protease mutant strains, leupeptin (a protease inhibitor)- treated P. gingivalis at high doses induced high levels of MCP-1 production. To examine the mechanisms underlying the diminished production of MCP-1 by P. gingivalis proteases, the activation of mitogen-activated protein (MAP) kinases and NF-${\kappa}$B was compared between the 381 and MT10W strains. Whilst high doses of both 381 and MT10W similarly activated the three members of the MAP kinase family, the DNA binding activity of NF-${\kappa}$B, as revealed by gel shift assays, was greatly increased only by MT10W. Taken together, our data indicate that P. gingivalis stimulates the production of high levels of TNF-${\alpha}$, IL-1${\beta}$, IL-6, and MCP-1 but that high dose challenges with this bacterium result in a diminished production of MCP-1 and IL-6 via the protease-mediated suppression of NF-${\kappa}$B activation in THP-1 macrophagic cells.

Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage

  • Song, Juhyun;Jun, Mira;Ahn, Mok-Ryeon;Kim, Oh Yoen
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.377-384
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Resveratrol, a natural polyphenol, has multiple functions in cellular responses including apoptosis, survival, and differentiation. It also participates in the regulation of inflammatory response and oxidative stress. MicroRNA-Let-7A (miR-Let7A), known as a tumor suppressor miRNA, was recently reported to play a crucial role in both inflammation and apoptosis. Therefore, we examined involvement of miR-Let7A in the modulation of inflammation and cell survival/apoptosis regulated by resveratrol. MATERIALS/METHODS: mRNA expression of pro-/anti-inflammatory cytokines and sirtuin 1 (SIRT1), and protein expression of apoptosis signal-regulating kinase 1 (ASK1), p-ASK1, and caspase-3 and cleaved caspase-3 were measured, and cell viability and Hoechst/PI staining for apoptosis were observed in Lipopolysaccharide (LPS)-stimulated human THP-1 macrophages with the treatment of resveratrol and/or miR-Let7A overexpression. RESULTS: Pre-treatment with resveratrol ($25-200{\mu}M$) resulted in significant recovery of the reduced cell viabilities under LPS-induced inflammatory condition and in markedly increased expression of miR-Let7A in non-stimulated or LPS-stimulated cells. Increased mRNA levels of tumor necrosis $factor-{\alpha}$ and interleukin (IL)-6 induced by LPS were significantly attenuated, and decreased levels of IL-10 and brain-derived neurotrophic factor were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. Decreased expression of IL-4 mRNA by LPS stimulation was also significantly increased by miR-Let7A overexpression co-treated with resveratrol. In addition, decreased SIRT1 mRNA levels, and increased p-ASK1 levels and PI-positive cells by LPS stimulation were significantly restored by resveratrol and miR-Let7A overexpression, respectively, or in combination. CONCLUSIONS: miR-Let7A may be involved in the inflammatory response and cell survival/apoptosis modulated by resveratrol in human THP-1 macrophages.

Quinolone Alkaloids from Evodiae fructus Inhibit LFA-1/ICAM-1-mediated Cell Adhesion

  • Lee, Seung-Woong;Chang, Jong-Sun;Lim, Ju-Hwan;Kim, Min-Seok;Park, Su-Jin;Jeong, Hyung-Jae;Kim, Min-Soo;Lee, Woo-Song;Rho, Mun-Chual
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Four quinolone alkaloids were isolated by bioactivity-guided fractionation from the methanol extracts of Evodiae fructus fruits. Structures of compounds were elucidated by spectroscopic analysis ($^1H$-, $^{13}$C-NMR and MS), as follows: 1-methyl-2-undecyl-4(1H)-quinolone (1), evocarpine (2), dihydroevocarpine (3) and mixture of [1-methyl-2-[(Z)-10-pentadecenyl]-4(1H)-quinolone and 1-methyl-2-[(Z)-6-pentadecenyl]-4(1H)-quinolone] (4). They inhibited the interaction of sICAM-1 and LFA-1 in THP-1 cells at $IC_{50}$ values of >150 (1), 109.8 (2), >150 (3) and $40.9 {\mu}M$ (4), respectively,

Leptin potentiates Prevotella intermedia lipopolysaccharide-induced production of TNF-$\alpha$ in monocyte-derived macrophages

  • Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.119-124
    • /
    • 2010
  • Purpose: In addition to regulating body weight, leptin is also recognized for its role in the regulation of immune function and inflammation. The purpose of this study was to investigate the effect of leptin on Prevotella (P.) intermedia lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-$\alpha$ production in differentiated THP-1 cells, a human monocytic cell line. Methods: LPS from P. intermedia ATCC 25611 was prepared by the standard hot phenol-water method. THP-1 cells were incubated in the medium supplemented with phorbol myristate acetate to induce differentiation into macrophage-like cells. The amount of TNF-$\alpha$ and interleukin-8 secreted into the culture medium was determined by enzyme-linked immunosorbent assay (ELISA). TNF-$\alpha$ and Ob-R mRNA expression levels were determined by semi-quantitative reverse transcription-polymerase chain reaction analysis. Results: Leptin enhanced P. intermedia LPS-induced TNF-$\alpha$ production in a dose-dependent manner. Leptin modulated P. intermedia LPS-induced TNF-$\alpha$ expression predominantly at the transcriptional level. Effect of leptin on P. intermedia LPS-induced TNF-$\alpha$ production was not mediated by the leptin receptor. Conclusions: The ability of leptin to enhance P. intermedia LPS-induced TNF-$\alpha$ production may be important in the establishment of chronic lesion accompanied by osseous tissue destruction observed in inflammatory periodontal disease.

Manassantin A and B Isolated from Saururus chinensis Inhibit $TNF-{\alpha}-Induced$ Cell Adhesion Molecule Expression of Human Umbilical Vein Endothelial Cells

  • Kwon Oh Eok;Lee Hyun Sun;Lee Seung Woong;Chung Mi Yeon;Bae Ki Hwan;Rho Mun-Chual;Kim Young-kook
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • Leukocyte adhesion to the vascular endothelium is a critical initiating step in inflammation and atherosclerosis. We have herein studied the effect of manassantin A (1) and S (2), dineolignans, on interaction of THP-1 monocytic cells and human umbilical vein endothelial cells (HUVEC) and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin in HUVEC. When HUVEC were pretreated with 1 and 2 followed by stimulation with $TNF-{\alpha}$, adhesion of THP-1 cells to HUVEC decreased in dose-dependent manner with $IC_{50}$ values of 5 ng/mL and 7 ng/mL, respectively, without cytotoxicity. Also, 1 and 2 inhibited $TNF-{\alpha}-induceda$ up-regulation of ICAM-1, VCAM-1 and E-selectin. The present findings suggest that 1 and 2 prevent monocyte adhesion to HUVEC through the inhibition of ICAM-1, VCAM-1 and E-selectin expression stimulated by $TNF-\alpha$, and may imply their usefulness for the prevention of atherosclerosis relevant to endothelial activation.

Increased Caveolin-2 Expression in Brain Endothelial Cells Promotes Age-Related Neuroinflammation

  • Hyunju, Park;Jung A, Shin;Jiwoo, Lim;Seulgi, Lee;Jung-Hyuck, Ahn;Jihee Lee, Kang;Youn-Hee, Choi
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.950-962
    • /
    • 2022
  • Aging is a major risk factor for common neurodegenerative diseases. Although multiple molecular, cellular, structural, and functional changes occur in the brain during aging, the involvement of caveolin-2 (Cav-2) in brain ageing remains unknown. We investigated Cav-2 expression in brains of aged mice and its effects on endothelial cells. The human umbilical vein endothelial cells (HUVECs) showed decreased THP-1 adhesion and infiltration when treated with Cav-2 siRNA compared to control siRNA. In contrast, Cav-2 overexpression increased THP-1 adhesion and infiltration in HUVECs. Increased expression of Cav-2 and iba-1 was observed in brains of old mice. Moreover, there were fewer iba-1-positive cells in the brains of aged Cav-2 knockout (KO) mice than of wild-type aged mice. The levels of several chemokines were higher in brains of aged wild-type mice than in young wild-type mice; moreover, chemokine levels were significantly lower in brains of young mice as well as aged Cav-2 KO mice than in their wild-type counterparts. Expression of PECAM1 and VE-cadherin proteins increased in brains of old wild-type mice but was barely detected in brains of young wild-type and Cav-2 KO mice. Collectively, our results suggest that Cav-2 expression increases in the endothelial cells of aged brain, and promotes leukocyte infiltration and age-associated neuroinflammation.

Proteomic Analysis of the Triglyceride-Rich Lipoprotein-Laden Foam Cells

  • Lu, Yanjun;Guo, Jianli;Di, Yong;Zong, Yiqiang;Qu, Shen;Tian, Jun
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.175-181
    • /
    • 2009
  • In hypertriglyceridaemic individuals, atherosclerogenesis is associated with the increased concentrations of very low density lipoprotein (VLDL) and VLDL-associated remnant particles. In vitro studies have suggested that VLDL induces foam cells formation. To reveal the changes of the proteins expression in the process of foam cells formation induced by VLDL, we performed a proteomic analysis of the foam cells based on the stimulation of differentiated THP-1 cells with VLDL. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, 14 differentially expressed proteins, containing 8 up-regulated proteins and 6 down-regulated proteins were identified. The proteins are involved in energy metabolism, oxidative stress, cell growth, differentiation and apoptosis, such as adipose differentiation-related protein (ADRP), enolase, S100A11, heat shock protein 27 and so on. In addition, the expression of some selected proteins was confirmed by Western blot and RT-PCR analysis. The results suggest that VLDL not only induces lipid accumulation, but also brings about foam cells diverse characteristics by altering the expression of various proteins.

Effects of ChongMyung-Tang and SansaChongMyung-Tang Extract on the Alzheimer's Disease Model Induced dy CT105 (총명탕(聰明湯)과 산사총명탕(山査聰明湯)이 CT105로 유도된 Alzheimer's Disease 병태 모델에 미치는 영향)

  • Lee Sang-Ryong;Jung In-Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.138-148
    • /
    • 2006
  • This research investigated the effect of the CMT and SCMT on Alzheimer's disease. The effects of the CMT and SCMT extract on expression of proinflammatory cytokine(IL-$1{\beta}$, IL-6, TNF-$\alpha$) in the THP-1 cell; amyloid precursor proteins(APP), acetylcholinesterase(AChE) mRNA of PC-12 cells treated with CT105; the AChE activity and the APP production of PC-12 cell lysate treated with CT105 were investigated. The CMT and SCMT extract suppressed overexpression of IL-$1{\beta}$, IL-6, TNF-$\alpha$ in the THP-1 cell treated dy LPS; the expression of APP, AChE mRNA in PC-12 cells treated with CT105; the AChE activity and the production of APP in PC-12 cell Iysate treated with CT105 significantly. This study suggest that CMT and SCMT may be effective for the prevention and treatment of Alzheimer's disease.

Effect of Alliin on Vascular Functions (혈관 생리 활성에 미치는 alliin의 효능)

  • Seo, Jeong-Hwa;Kim, Jeong-Min;Ahn, Sun-Young;Cho, Jin-Gu;Kim, Jong-Min;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.976-982
    • /
    • 2009
  • Little is known about the cardiovascular roles of alliin, a functional component in garlic that has been used as food material. Thus, we examined a broad range of cardiovascular activities of alliin in this study. From our in vitro experiments, alliin was determined to act as a stimulant to induce endothelial cell proliferation and endothelial cell migration. Since endothelial cell proliferation and migration are highly associated with angiogenesis and wound healing, alliin is suggested as a regulator to control angiogenesis and wound healing. In addition, alliin was elucidated to prevent lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells and LPS-induced homotypic THP-1 cell aggregation. These inhibitory effects indicate that alliin is likely to act as an anti-atherosclerotic and anti-thrombotic factor, because leukocytic adhesion to endothelial cells and homotypic leukocyte aggregation are highly associated with atherosclerosis and thrombosis, respectively. Our additional findings show that alliin has no effect on the production of nitric oxide (NO), an important vasoregulator. In conclusion, alliin is suggested as a regulator for controlling various cardiovascular functions.