Browse > Article
http://dx.doi.org/10.1007/s10059-009-0120-1

Proteomic Analysis of the Triglyceride-Rich Lipoprotein-Laden Foam Cells  

Lu, Yanjun (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Guo, Jianli (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Di, Yong (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Zong, Yiqiang (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Qu, Shen (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Tian, Jun (Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology)
Abstract
In hypertriglyceridaemic individuals, atherosclerogenesis is associated with the increased concentrations of very low density lipoprotein (VLDL) and VLDL-associated remnant particles. In vitro studies have suggested that VLDL induces foam cells formation. To reveal the changes of the proteins expression in the process of foam cells formation induced by VLDL, we performed a proteomic analysis of the foam cells based on the stimulation of differentiated THP-1 cells with VLDL. Using two-dimensional gel electrophoresis (2-DE) and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, 14 differentially expressed proteins, containing 8 up-regulated proteins and 6 down-regulated proteins were identified. The proteins are involved in energy metabolism, oxidative stress, cell growth, differentiation and apoptosis, such as adipose differentiation-related protein (ADRP), enolase, S100A11, heat shock protein 27 and so on. In addition, the expression of some selected proteins was confirmed by Western blot and RT-PCR analysis. The results suggest that VLDL not only induces lipid accumulation, but also brings about foam cells diverse characteristics by altering the expression of various proteins.
Keywords
atherosclerogenesis; foam cell; proteomics; THP-1 cell; very low density lipoprotein;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Larigauderie, G., Cuaz-Perolin, C., Younes, A.B., Furman, C., Lasselin, C., Copin, C., Jaye, M., Fruchart, J.C., and Rouis, M. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of boxidation. FEBS J. 273, 3498-3351   DOI   ScienceOn
2 Martin-Ventura, J.L., Duran, M.C., Blanco-Colio, L.M., Meilhac, O., Leclercq, A., Michel, J.B., Jensen, O.N., Hernandez-Merida, S., Tunon, J., Vivanco, F., et al. (2004). Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 110, 2216-2219   DOI   ScienceOn
3 Memon, A.A., Sorensen, B.S., Meldgaard, P., Fokdal, L., Thykjaer, T., and Nexo, E. (2005). Down-regulation of S100C is associated with bladder cancer progression and poor survival. Clin. Cancer Res. 11, 606-611   PUBMED
4 Rapp, J.H., Lespine, A., Hamilton, R.L., Colyvas, N., Chaumeton, A.H., Tweedie-Hardman. J., and Kane, J.P. (1994). Triglyceriderich lipoproteins isolated by selected affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb Vasc. Biol. 14, 1767-1774   DOI   PUBMED
5 Redgrave, T.G., Roberts, D., and West, C.E. (1975). Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal. Biochem. 65, 42-49   DOI   ScienceOn
6 Stollenwerk, M.M., Schiopu, A., Fredrikson, G.N., Dichtl, W., Nilsson, J., and Ares, M.P. (2005). Very low density lipoprotein potentiates tumor necrosis factor-alpha expression in macrophages. Atherosclerosis. 179, 247-254   DOI   PUBMED   ScienceOn
7 Frank, J.S., and Fogelman, A.M. (1989). Ultrastructure of the intima in WHHL and cholesterol-fed rabbit aortas prepared by ultrarapid freezing and freeze-etching. J. Lipid Res. 30, 967-978   PUBMED
8 Kanamori, T., Takakura, K., Mandai, M., Kariya, M., Fukuhara, K., Sakaguchi, M., Huh, N.H., Saito, K., Sakurai, T., Fujita, J., et al. (2004). Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Mol. Hum. Reprod. 10, 735-742   DOI   ScienceOn
9 Shelness, G.S., and Sellers, J.A. (2001). Very-low-density lipoprotein assembly and secretion. Curr. Opin. Lipidol. 12, 151-157   DOI   ScienceOn
10 Byrne, C.D. (1999). Triglyceride-rich lipoproteins: are links with atherosclerosis mediated by a procoagulant and proinflammatory phenotype? Atherosclerosis 145, 1-15   DOI   PUBMED   ScienceOn
11 Persson, J., Nilsson, J., and Lindholm, M.W. (2006). Cytokine response to lipoprotein lipid loading in human monocyte-derived macrophages. Lipids Health Dis. 5, 17-24   DOI   ScienceOn
12 Brasaemle, D.L., Barber, T., Wolins, N., Serrero, G., Blanchette, E.J., and Londos, C. (1997). Adipose differentiation-related protein is an ubiquitouslyexpressed lipid storage droplet associated protein. J. Lipid Res. 38, 2249-2263   PUBMED
13 Chawla, A., Lee, C.H., Barak, Y., He, W., Rosenfeld, J., Liao, D., Han, J., Kang, H., and Evans, R.M. (2003). PPAR$\delta$ is a very low-density lipoprotein sensor in macrophages. Proc. Natl. Acad. Sci. USA 100, 1268-1273   DOI   PUBMED   ScienceOn
14 Evans, A.J., Sawyez, C.G., Wolfe, B.M., Connelly, P.W., Maguire, G.F., and Huff, M.W. (1993). Evidence that cholesteryl ester and triglyceride accumulation in J774.2 macrophages induced by very low density subfractions occurs by different mechanisms. J. Lipid Res. 34, 703-717   PUBMED
15 Gordon, D., Reidy, M.A., Benditt, E.P., and Schwartz, S.M. (1990). Cell proliferation in human coronary arteries. Proc. Natl. Acad. Sci. USA 87, 4600-4604   DOI   ScienceOn
16 Gao, J., and Serrero, G. (1999). Adipose differentiation related protein (ADRP) expressed in transfected COS-7 cells selectively stimulates long chain fatty acid uptake. J. Biol. Chem. 274, 16825-16830   DOI   PUBMED
17 Persson, J., Degerman, E., Nilsson, J., and Lindholm, M.W. (2007). Perilipin and adipophilin expression in lipid loaded macrophages. Biochem. Biophys. Res. Commun. 363, 1020-1026   DOI   ScienceOn
18 Rosenfeld, M.E., and Ross, R. (1990). Macrophage and smooth muscle cell proliferation in atherosclerotic lesions of WHHL and comparably hypercholesterolemic fat-fed rabbits. Arteriosclerosis 10, 680-687   DOI   PUBMED
19 Ricote, M., Valledor, A.F., and Glass, C.K. (2004). Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, Inflammation, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 230-239   DOI   ScienceOn
20 Argmann, C.A., Van Den Diepstraten, C.H., Sawyez, C.G., Edwards, J.Y., Hegele, R.A., Wolfe, B.M., and Huff, M.W. (2001). Transforming growth factor-$\beta$1 inhibits macrophage cholesteryl ester accumulation induced by native and oxidized VLDL remnants. Arterioscler. Thromb. Vasc. Biol. 21, 2011-2018   DOI   ScienceOn
21 Han, D., Williams, E., and Cadenas, E. (2001). Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem. J. 2001, 353, 411-416   DOI   ScienceOn
22 Sukhanov, S., Higashi, Y., Shai, S.Y., Itabe, H., Ono, K., Parthasarathy, S., and Delafontaine, P. (2006). Novel effect of oxidized low-density lipoprotein: cellular ATP depletion via downregulation of glyceraldehyde-3-phosphate dehydrogenase. Circ. Res. 99, 191-200   DOI   ScienceOn
23 Carr, T.P., Andresen. C.J., and Rudel, L.L. (1993). Enzymatic determination of triglyceride, free cholesterol, and total cholesterol in tissue lipid extracts. Clin. Biochem. 26, 39-42   DOI   ScienceOn
24 Alexander, R.W. (1998). Atheroscleros is as a disease of redoxsensitive genes. Trans. Am. Clin Climatol. Assoc. 109, 129-146   PUBMED
25 Imamura, M., Inoguchi, T., Ikuyama, S., Taniguchi, S., Kobayashi, K., Nakashima, N., and Nawata, H. (2002). ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am. J. Physiol. Endocrinol. Metab. 283, 775-783   DOI   ScienceOn
26 Schmid, G.M., Converset, V., Walter, N., Sennitt, M.V., Leung, K.Y., Byers, H., Ward, M., Hochstrasser, D.F., Cawthorne, M.A., and Sanchez, J.C. (2004). Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4, 2270-2282   DOI   ScienceOn
27 Aronis, A., Madar, Z., and Tirosh, Q. (2005). Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis. Free Radic. Biol. Med. 38, 1221-1230   DOI   ScienceOn
28 Austin, M.A. (1999). Epidemiology of hypertriglyceridemia and cardiovascular disease. Am. J. Cardiol. 83, 13F-16F   DOI   PUBMED   ScienceOn
29 Duval, C., Auge, N., Frisach, M.F., Casteilla, L., Salvayre, R., and Negre-Salvayre, A. (2002). Mitochondrial oxidative stress is modulated by oleic acid via an epidermal growth factor receptordependent activation of glutathione peroxidase. Biochem. J. 367, 889-894   DOI   ScienceOn
30 Dichtl, W., Nilsson, L., Goncalves, I., Ares, M.P., Banfi, C., Calara, F., Hamsten, A., Eriksson, P., and Nilsson, J. (1999). Very lowdensity lipoprotein activates nuclear factor-kappaB in endothelial cells. Circ. Res. 84, 1085-1094   DOI   PUBMED   ScienceOn
31 Hokanson, J.E., and Austin, M.A. (1996). Plasma triglyceride level is a risk factor for cardiovascular disease independent of high density lipoprotein cholesterol levels: a meta-analysis of population-based prospective studies. J. Cardiovasc. Risk 3, 213-219   DOI   ScienceOn
32 Inada, H., Naka, M., Tanaka, T., Davey, G.E., and Heizmann, C.W. (1999). Human S100A11 exhibits differential steady-state RNA levels in various tissues and a distinct subcellular localization. Biochem. Biophys. Res. Commun. 263, 135-138   DOI   ScienceOn
33 Vanderlaan, P.A., Reardon, C.A., Thisted, R.A., and Getz, G.S. (2009). VLDL best predicts aortic root atherosclerosis in low density lipoprotein receptor deficient mice. J. Lipid Res. 50, 376-385   DOI   ScienceOn
34 Martin-Ventura, J.L., Nicolas, V., Houard, X., Blanco-Colio, L.M., Leclercq, A., Egido, J., Vranckx, R., Michel, J.B., and Meilhac, O. (2006). Biological significance of decreased HSP27 in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 1337-1343   DOI   ScienceOn
35 Nordestgaard, B.G., Wootton, R., and Lewis, B. (1995). Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo: Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler. Thromb. Vasc. Biol. 15, 534-542   DOI   PUBMED   ScienceOn
36 Pedrini, M.T., Kranebitter, M., Niederwanger, A., Kaser, S., Engl. J., Debbage, P., Huber, L.A., and Patsch, J.R. (2005). Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of nonesterified fatty acid levels. Diabetologia 48, 756-766   DOI   ScienceOn