• Title/Summary/Keyword: THD

Search Result 706, Processing Time 0.041 seconds

Single-Phase Series Type Quasi Z-Source Voltage Sag-Swell Compensator for Voltage Compensation of Entire Region (전 영역의 전압보상을 위한 단상 직렬형 Quasi Z-소스 전압 Sag-Swell 보상기)

  • Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.322-332
    • /
    • 2013
  • Conventional single-phase series quasi Z-source voltage compensator can not compensate for voltage sag less than 50% that frequently occurs in the industrial field. In this study, single-phase series quasi Z-source voltage sag-swell compensator which can compensate the voltage variation of entire range is proposed. The proposed system is composed of two quasi Z-source AC-AC converters connected in series with output terminal stage. Voltage sag less than 50% could be compensated by the intersection switching control of the upper converter duty ratio and of the upper converter duty ratio. Also the compensation voltage and its flowchart for each compensation mode are presented for entire sag-swell region. To confirm the validity of the proposed system, a DSP(DSP28335) controlled experimental system was manufactured. As a result, the proposed system could compensate for the voltage sag/swell of 20% and 60%. Finally, voltage compensation factor and THD(Total Harmonic Distortion) according to voltage variation and load change were measured, and voltage quality shows a good results.

Performance Analysis of a Novel Reduced Switch Cascaded Multilevel Inverter

  • Nagarajan, R.;Saravanan, M.
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.48-60
    • /
    • 2014
  • Multilevel inverters have been widely used for high-voltage and high-power applications. Their performance is greatly superior to that of conventional two-level inverters due to their reduced total harmonic distortion (THD), lower switch ratings, lower electromagnetic interference, and higher dc link voltages. However, they have some disadvantages such as an increased number of components, a complex pulse width modulation control method, and a voltage-balancing problem. In this paper, a novel nine-level reduced switch cascaded multilevel inverter based on a multilevel DC link (MLDCL) inverter topology with reduced switching components is proposed to improve the multilevel inverter performance by compensating the above mentioned disadvantages. This topology requires fewer components when compared to diode clamped, flying capacitor and cascaded inverters and it requires fewer carrier signals and gate drives. Therefore, the overall cost and circuit complexity are greatly reduced. This paper presents modulation methods by a novel reference and multicarrier based PWM schemes for reduced switch cascaded multilevel inverters (RSCMLI). It also compares the performance of the proposed scheme with that of conventional cascaded multilevel inverters (CCMLI). Simulation results from MATLAB/SIMULINK are presented to verify the performance of the nine-level RSCMLI. Finally, a prototype of the nine-level RSCMLI topology is built and tested to show the performance of the inverter through experimental results.

Inverter Output Voltage Regulation based on P+Resonant Control (P+공진 제어기를 활용한 인버터 출력 전압 제어 방식 연구)

  • Lim, Kyungbae;Choi, Jaeho;Jang, Juyoung;Moon, Sangho;Kim, Jaesig
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.249-251
    • /
    • 2013
  • 본 논문은 LCL 필터를 가진 계통연계형 인버터 기반 마이크로그리드가 독립 운전 모드에서 동작할때의 인버터 출력 전압 제어 방식에 대해 다루고 있다. 분산 전원 기반의 마이크로그리드가 독립 운전 모드로 전환될 경우 마이크로그리드는 분산 전원만으로 전체 지역적 부하를 담당해야 하는 의무를 지니게 된다. 따라서 이때 마이크로그리는 전압원으로 가정되며 이를 위해 전압 제어가 수행되어져야 하며 담당하고 있는 부하가 불평형 또는 비선형 부하 일 경우 역상차, 영상차, 특정 차수의 고조파가 발생되기 때문에 기존의 전압 제어 방식을 사용할 경우 출력 전압에 높은 THD 가 발생하게 되며 이는 부하의 성능을 저해하는 요소로 작용한다. 따라서 본 논문에서는 기존의 PI 제어기 대신 특정 주파수에서 높은 제어 게인을 갖게하는 P+ 다중 공진제어기를 선정하였으며 이를 특정 고조파 별로 다중으로 제어함으로써 비선형-불평형 부하 연결에 의한 악영향에 대처하고자 하였다. P+ 다중 공진제어에 의한 출력 전압 THD 개선 효과는 PSIM Simulation 을 통해 검증되었으며 기존의 PI, Advanced PI 제어기와 그 성능이 비교 분석되었다.

  • PDF

Electronic Ballast of High Power Factor Using SEPIC Converter for Electrodeless Fluorescent Lamps (SEPIC 컨버터를 이용한 무전극형광램프용 고역률 전자식 안정기)

  • 장도현;주형종;권명일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.285-293
    • /
    • 2004
  • In this Paper the electronic ballast using the SEPIC(Single Ended Primary Inductor Converter) converter for the multiple electrodeless fluorescent lamps is proposed, which has the structure of the active PFC and self oscillating function. The SEPIC converter system has the characteristics of the power factor with low input current harmonic distortion. The proposed control method is based on the aveage-current-mode using the dedicated integrated circuit UC3854. The proposed electronic ballast has the reduction effect for the energy and manufacturing cost because it is designed for tripple electrodeless fluorescent lamps. The experimental results shows that the power factor is higher and the THD is lower.

Robust Active LED Driver with High Power Factor and Low Total Harmonic Distortion Compatible with a Rapid-Start Ballast

  • Park, Chang-Byung;Choi, Bo-Hwan;Cheon, Jun-Pil;Rim, Chun-Taek
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.226-236
    • /
    • 2014
  • A new active LED driver with high power factor (PF) and low total harmonic distortion (THD) compatible with a rapid-start ballast is proposed. An LC input filter is attached to the ballast to increase PF and reduce THD. A boost converter is then installed to regulate the LED current, where an unstable operating region has been newly identified. The unstable region is successfully stabilized by feedback control with two zeroes. The extremely high overall system of the 10th order is completely analyzed by the newly introduced phasor transformed circuits in static and dynamic analyses. Although a small DC capacitor is utilized, the flicker percentage of the LED is drastically mitigated to 1% by the fast controller. The proposed LED driver that employs a simple controller with a start-up circuit is verified by extensive experiments whose results are in good agreement with the design.

Modeling and Line Current Control of a Three Phase Voltage Source Inverter using an LCL filter in a Balanced Delta Circuit (LCL 필터를 사용하는 삼상 전압형 인버터의 모델링과 계통전류 제어)

  • Lee, Sang-In;Lee, Kui-Jun;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.18-20
    • /
    • 2007
  • 3상 계통 연계 형 인버터 시스템은 낮은 THD를 가지는 계통 전류를 공급해주기 위해 LCL 필터를 사용한다. LCL 필터를 사용하는 가장 큰 장점은 낮은 스위칭 주파수에서도 만족할 만한 수준의 THD를 가지는 계통 전류를 생성시킬 수 있다는 점이다. 반면에, 단점은 LCL필터를 포함하는 계통 연계 형 인버터 시스템의 전달함수에 하나의 공진 극점이 존재한다는 점이다. 이것은 계통 전류 제어 loop에서, 안정성 문제에 영향을 미친다. 정확한 제어를 위해서 시스템의 전달함수는 필수적이다. 여기서 중요한 점은 많은 저자들이 시뮬레이션과 실험을 할 때, 중성점이 없는 회로에서 행하지만 회로 해석을 할 때에는 중성점이 있는 회로에서 해석을 한다는 점이다. 그래서 우리는 등가 델타회로에서 LCL 필터를 포함한 전체 시스템의 수학적인 모델을 제안한다. 이 모델은 모든 인덕터와 커패시터의 기생 저항을 고려한다. 또한 이 논문은 계통 전류를 제어하기 위한 제어기의 해석적인 설계 절차를 포함한다. 제안한 수학적인 모델을 입증하기 위해, PSIM을 통한 시뮬레이션과 Simulink를 통한 시뮬레이션 결과를 비교하였다.

  • PDF

A Power Regulation and Harmonic Current Elimination Approach for Parallel Multi-Inverter Supplying IPT Systems

  • Mai, Ruikun;Li, Yong;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1245-1255
    • /
    • 2016
  • The single resonant inverter is widely employed in typical inductive power transfer (IPT) systems to generate a high-frequency current in the primary side. However, the power capacity of a single resonant inverter is limited by the constraints of power electronic devices and the relevant cost. Consequently, IPT systems fail to meet high-power application requirements, such as those in rail applications. Total harmonic distortion (THD) may also violate the standard electromagnetic interference requirements with phase shift control under light load conditions. A power regulation approach with selective harmonic elimination is proposed on the basis of a parallel multi-inverter to upgrade the power levels of IPT systems and suppress THD under light load conditions by changing the output voltage pulse width and phase shift angle among parallel multi-inverters. The validity of the proposed control approach is verified by using a 1,412.3 W prototype system, which achieves a maximum transfer efficiency of 90.602%. Output power levels can be dramatically improved with the same semiconductor capacity, and distortion can be effectively suppressed under various load conditions.

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

An Efficient and High-gain Inverter Based on The 3S Inverter Employs Model Predictive Control for PV Applications

  • Abdel-Rahim, Omar;Funato, Hirohito;Junnosuke, Haruna
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1484-1494
    • /
    • 2017
  • We present a two-stage inverter with high step-up conversion ratio engaging modified finite-set Model Predictive Control (MPC) for utility-integrated photovoltaic (PV) applications. The anticipated arrangement is fit for low power PV uses, the calculated efficiency at 150 W input power and 19 times boosting ratio was around 94%. The suggested high-gain dc-dc converter based on Cockcroft-Walton multiplier constitutes the first-stage of the offered structure, due to its high step-up ability. It can boost the input voltage up to 20 times. The 3S current-source inverter constitutes the second-stage. The 3S current-source inverter hires three semiconductor switches, in which one is functioning at high-frequency and the others are operating at fundamental-frequency. The high-switching pulses are varied in the procedure of unidirectional sine-wave to engender a current coordinated with the utility-voltage. The unidirectional current is shaped into alternating current by the synchronized push-pull configuration. The MPC process are intended to control the scheme and achieve the subsequent tasks, take out the Maximum Power (MP) from the PV, step-up the PV voltage, and introduces low current with low Total Harmonic Distortion (THD) and with unity power factor with the grid voltage.

Single-Stage Quasi Resonant Type PSR(Primary Side Regulation) PWM Converter for the LED Drive in TRIAC Phase Controlled Dimmer (TRIAC위상 제어 조광기에서의 LED구동을 위한 Single-Stage 준 공진형 PSR(Primary Side Regulation) PWM 컨버터)

  • Han, Jae-Hyun;Lim, Young-Cheol;Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.84-94
    • /
    • 2013
  • In case when the existing TRIAC phase controlled dimmer is drove for the LED lighting equipments, there are many problems such as the LED flicker in low phase-angles, the acoustic noise and elements damage by increase of the peak voltage in the input filter capacitor, mulfunction by insufficiency of the TRIAC holding current, and the abnormal oscillation by LC resonant. In this paper, we proposes the single-stage quasi-resonant PSR(Primary Side Regulation) PWM converter, and the design, the simulation and experiment are performed. As a result, it could confirm that the proposed PWM converter is the lighting equipments for LED drive which can alternate the existing 60W class incandescent bulbs and it has the high drive performance of the efficiency 80% and over, the power factor 0.95 and over under the normal voltage 220V. Finally, total harmonic distortion(THD) is gratified with a standard[1] of the lighting equipments and the durability is evaluated as the high reliablilty of 150,000 hours and over.