• Title/Summary/Keyword: TGF-β

Search Result 252, Processing Time 0.028 seconds

Role of ERK (Extracellular Signal Regulated Kinas) and PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) on TGF-β1 Induced Human Endometrial Stromal Cell Decidualization (TGF-β1에 의하여 유도된 인간자궁내막의 탈락막화(Decidualization)에 있어서 ERK (Extracellular Signal Regulated Kinas)와 PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)의 역할)

  • Chang, Hye Jin;Lee, Jae Hoon;Kim, Mi Ran;Hwang, Kyung Joo;Park, Dong Wook;Min, Churl K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Objective: To investigate the role of ERK and $PPAR{\gamma}$ on the $TGF-{\beta}1$ induced human endometrial stromal cell decidualization in vitro. Method: Endometrial stromal cells are cultured under the following condition: DMEM/F12 (10% FBS, 1 nM E2 and 100 nM P4). $TGF-{\beta}1$ (5 ng/ml), Rosiglitazone (50 nM), and PD98059 ($20{\mu}M$) were added according to experimental purposes. Trypan-Blue and hematocytometer were utilized to count cell number. Enzyme-linked immunosorbent assay (ELISA) and western blotting were utilized to detect proteins. Result: $TGF-{\beta}1$ inhibited proliferation of cultured human endometrial stromal cells and induced expression of PGE2 and prolactin. This effect was mediated by Smad and ERK activation. Administration of rosiglitazone, $PPAR{\gamma}$ agonist, prevented $TGF-{\beta}1$ effect on cell proliferation. Furthermore, Rosiglitazone inhibited $TGF-{\beta}1$ induced activation of ERK, consequently reduced PGE2 and prolactin production. Conclusion: $TGF-{\beta}1$ induced decidualization of endometrial stromal cell through Smad and ERK phosphorylation. $PPAR{\gamma}$ acts as a negative regulator of human ndometrial cell decidualization in vitro.

Downregulation of SGK1 Expression is Critical for TGF-β-induced Apoptosis in Mouse Hepatocytes Cells (TGF-β에 의한 간세포의 세포사멸 과정에서 SGK1 발현 감소의 중요성)

  • Nam, In-Koo;Yoo, Jiyun
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1500-1506
    • /
    • 2012
  • Transforming growth factor (TGF)-${\beta}$-dependent apoptosis is important in the elimination of damaged or abnormal cells from normal tissues, especially in liver, in vivo. To investigate which gene expressions are critical for TGF-${\beta}$-induced apoptosis in hepatocytes, gene expression profiling experiments were performed with TGF-${\beta}$-treated and non-treated mouse hepatocytes AML12 cells. Findings showed that serum and glucocorticoid-inducible protein kinase1 (SGK1) expression is markedly downregulated during TGF-${\beta}$-induced apoptosis. Findings confirmed that expression of SGK1 protein, as well as mRNA, is also markedly decreased with TGF-${\beta}$ treatment. Infection of adenoviral vector encoding constitutively active SGK1 (CA-SGK1), but not kinase dead SGK1 (KD-SGK1), attenuated TGF-${\beta}$-induced apoptosis. All of these results suggest that downregulation of SGK1 expression is critical for TGF-${\beta}$-induced apoptosis in AML12 cells.

Study of plasma TGF-β1 level as a useful tumor marker in gastric cancer and prostate cancer (위암 및 전립선암의 종양 표지 인자로서 혈장 TGF-β1에 대한 연구)

  • Lim, Chang Ki;Shin, Hoon;Choi, In Young;Chung, Byung Ha;Ryu, Min Hee;Bang, Yung Jue;Jin, Seung Won
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.260-265
    • /
    • 2001
  • Transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) is a multipotent growth factor affecting development, homeostasis and tissue repair. Many kinds of malignant tissues were reported to overexpress transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) gene. However, a little work has been done on the circulating $TGF-{\beta}1$ and the association of $TGF-{\beta}1$ with progression in patients with malignant tumors. In this study, we measured the plasma level of $TGF-{\beta}1$ in gastric cancer and prostate cancer patients and evaluated the utility of plasma $TGF-{\beta}1$ as a possible tumor marker. We used Enzyme-linked immunosorbent assay (ELISA) system in order to measure plasma $TGF-{\beta}1$ level in 134 gastric cancer patients, 50 prostate cancer patients and 290 normal controls. And the tumor marker, carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), was compared with $TGF-{\beta}1$ in the aspects of sensitivity and specificity. The mean plasma $TGF-{\beta}1$ levels were $1.219{\pm}0.834$ (0.272-5.772) ng/mL in normal controls, $5.964{\pm}3.218$ (0.845-18.124) ng/mL in gastric cancer and $4.140{\pm}2.345$ (1.108-13.302) ng/mL in prostate cancer. In gastric cancer patients difference in plasma $TGF-{\beta}1$ level was not detected according to cancer stage. In comparison with other tumor marker (CEA, PSA) $TGF-{\beta}1$ is more potent in sensitivity. These results indicate that the plasma $TGF-{\beta}1$ level can be a potent tumor marker in gastric cancer and prostate cancer.

  • PDF

EXPRESSION OF TGF-α AND TGF-β (구강암 발생 과정에서 TGF-α 및 TGF-β 발현에 관한 연구)

  • Yang, Hee-Chang;Lee, Dong-Keun;Kim, Eun-Cheol
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.19 no.4
    • /
    • pp.414-434
    • /
    • 1997
  • Though many genetic and epigenetic alterations have been identified in hamster oral carcinogenesis model, there is no information about the possible role of transforming growth factor related with oral cancer. The purpose of this paper was to find the expression patterns of transforming growth factor alpha and beta during the stages of complete oral carcinogenesis model in hamster. 0.5% 9, 10-dimethyl-1, 2-benzanthracene(DMBA) in mineral oil was topically applied to the buccal pouch of 75 hamster three times a week during the experimental periods. The experimental animals were subdivided into two groups of control and experiment. Only the mineral oil was applied to the control group. 0.5% DMBA in mineral oil was applied to the experimental groups of 6, 8, 10, 12, 14, 16, 18 and 20 weeks. The expression of the $TGF-{\alpha}$ and $TGF-{\beta}$ protein were evaluated by the distribution and intensity of positive cells during the carcinogenesis using the immunohistochemical study. The following results were obtained ; 1. The buccal pouch epithelium of hamster was histologically changed to the dysplasia at 6, 8, 10 weeks, carcinoma in situ at 12 weeks, and squamous cell carcinoma at 14 weeks. 2. The expression of the $TGF-{\alpha}$ was restricted to the parabasal and basal layers of the normal and dysplastic mucosa, but those positive cells were extended to the spinous layers of the epithelium in the carcinoma. 3. The degree of $TGF-{\alpha}$ expression was markedly decreased in the carcinoma at 16, 18, 20. The strong positive staining in the center of cancer islands and weak positive staining in periphery of tumor were seen at the stage of squamous cell carcinoma. 4. The positive index of the $TGF-{\alpha}$ had a tendency to increase with DMBA- applied time. There was a statistically significant difference between 12, 18, 20 experimental group and control group (p<0.05). 5. The expression of the $TGF-{\beta}$ was shown at the cytoplasm of all control and experimental groups, and the parabasal and basal layers of the normal and dyslastic mucosa, but it was shown at the basal layers of the epithelium in the carcinoma. 6. $TGF-{\beta}$ was expressed diffusely at 16, 18, 20 experimental group. The strong positive staining in the center of cancer islands and positive staining in periphery of tumor were seen at the stage of squamous cell carcinoma. From the above findings, the expression of $TGF-{\alpha}$ and ${\beta}$ in oral carcinogenesis model seems to have two formal stages, the first being an overexpression step as reaction to uncontrolled growth and the second being one in which external protein accumulate in the surrounding stroma and intracytoplasm. Overexpression of $TGF-{\alpha}$ and ${\beta}$ may have important cooperative roles for the promotion of cancer and factor of prognosis.

  • PDF

Effect and mechanism of docosahexaenoic acid on the proliferation of dermal papilla cells (Docosahexaenoic acid의 모유두세포 증식 효능 및 기전)

  • Ko, Jiyeon;Oh, Il-Joong;Kang, Jung-Il;Choi, Youn Kyung;Yoon, Hoon-Seok;Yoo, Eun-Sook;Ko, Chang-Ik;Ahn, Yong-Seok
    • Journal of Medicine and Life Science
    • /
    • v.16 no.3
    • /
    • pp.84-89
    • /
    • 2019
  • Docosahexaenoic acid (DHA), a principal of mackerel-derived fermented fish oil, increases the proliferation of dermal papilla cells (DPCs) via the upregulation of cell cycle-associated proteins such as cyclin D1 and cdc2 p34, and might promote hair-growth. However, the intracellular mechanisms that underlie the action of DHA in the proliferation of DPCs have not been investigated fully. In this study, we addressed the action mechanisms of DHA to trigger the activation of anagen in DPCs. DHA activated β-catenin signaling by the increased phosphorylation at serine 552 and serine 675 as well as the translocation and accumulation of activated β-catenin into the nucleus. In the other hand, DHA inhibited canonical TGF-β/Smad signaling by the decreased phosphorylation of Smad2/3. Taken together, the results indicate that DHA might stimulate anagen signaling via the activation of Wnt/β-catenin pathway, while the inactivation of canonical TGF-β signaling pathway in DPCs.

Hydrogen sulfide alleviates hypothyroidism-induced myocardial fibrosis in rats through stimulating autophagy and inhibiting TGF-β1/Smad2 pathway

  • Xiong Song;Liangui Nie;Junrong Long;Junxiong Zhao;Xing Liu;Liuyang Wang;Da Liu;Sen Wang;Shengquan Liu;Jun Yang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Hypothyroidism alone can lead to myocardial fibrosis and result in heart failure, but traditional hormone replacement therapy does not improve the fibrotic situation. Hydrogen sulfide (H2S), a new gas signaling molecule, possesses anti-inflammatory, antioxidant, and anti-fibrotic capabilities. Whether H2S could improve hypothyroidism-induced myocardial fibrosis are not yet studied. In our study, H2S could decrease collagen deposition in the myocardial tissue of rats caused by hypothyroidism. Furthermore, in hypothyroidism-induced rats, we found that H2S could enhance cystathionine-gamma-lyase (CSE), not cystathionine β-synthase (CBS), protein expressions. Finally, we noticed that H2S could elevate autophagy levels and inhibit the transforming growth factor-β1 (TGF-β1) signal transduction pathway. In conclusion, our experiments not only suggest that H2S could alleviate hypothyroidism-induced myocardial fibrosis by activating autophagy and suppressing TGF-β1/SMAD family member 2 (Smad 2) signal transduction pathway, but also show that it can be used as a complementary treatment to conventional hormone therapy.

Expression of TGF-β1 and EGFR in Irritation Fibroma and Oral Leukoplakia (면역조직화학염색법을 이용한 자극성 섬유종과 구강 백반증에서의 TGF-β1과 EGFR 발현 비교 연구)

  • Ryu, Mi-Heon
    • Journal of dental hygiene science
    • /
    • v.5 no.3
    • /
    • pp.97-103
    • /
    • 2005
  • Irritation fibroma (IF) is the most common tumor-like oral lesion that is evolved by proliferation of collagen in response to chronic irritation. Oral leukoplakia (OL) is considered as precancerous lesion characterized by proliferation of epithelial cells due to chronic irritation, smoking and drinking. TGF-${\beta}1$ and EGFR are important factors that play an essential role in extracellular matrix remodeling during normal wound healing process. The epithelial reaction by chronic irritation may be connected with pathogenesis of IF and OL. In the present study, we examined the expression of TGF-${\beta}1$ and EGFR in the IF and OL using immunohistochemistry. We used 88 cases of IF, 44 cases of OL and 9 cases of normal oral mucosa as normal control. TGF-${\beta}1$ was decreased in the epithelium of IF and OL. As for EGFR, the epithelial cells revealed the increased positive expression in IF and OL. In case of OL, the Spearman correlation coefficient of TGF-${\beta}1$ and EGFR was -0.10 (p< 0.05), which showed weak correlation. In the fibrous tissue, TGF-${\beta}1$ was increased only in IF. The expression difference of TGF-${\beta}1$ and EGFR may be involved in the pathogenesis of IF and OL.

  • PDF

Pro-tumorigenic roles of TGF-β signaling during the early stages of liver tumorigenesis through upregulation of Snail

  • Moon, Hyuk;Han, Kwang-Hyub;Ro, Simon Weonsang
    • BMB Reports
    • /
    • v.50 no.12
    • /
    • pp.599-600
    • /
    • 2017
  • Many studies have focused on the tumor suppressive role of $TGF-{\beta}$ signaling during the early stages of tumorigenesis by activating the target genes involved in cytostasis and apoptosis. We investigated the effects of $TGF-{\beta}$ inhibition on early tumorigenesis in the liver, by employing diverse inhibitory methods. Strikingly, $TGF-{\beta}$ inhibition consistently suppressed hepatic tumorigenesis that was induced either by activated RAS plus p53 downregulation or by the co-activation of RAS and TAZ signaling; this demonstrates the requirements for canonical $TGF-{\beta}$ signaling in tumorigenesis. Moreover, we found that Snail is the target gene of the $TGF-{\beta}$ signaling pathway that promotes hepatic carcinogenesis. The knockdown of Snail suppressed the early tumorigenesis in the liver, as did the $TGF-{\beta}$ inhibition, while the ectopic expression of Snail restored tumorigenesis that was suppressed by the $TGF-{\beta}$ inhibition. Our findings establish the oncogenic $TGF-{\beta}$-Smad-Snail signaling axis during the early tumorigenesis in the liver.

Study of plasma transforming growth factor-β1 level as a useful tumor marker in various cancers (종양 표지 인자로서 혈장 Transforming Growth Factor-β1에 대한 연구)

  • Shin, Hoon;Lim, Chang Ki;Choi, In Young;Lee, Doo Yun;Noh, Dong Yong;Ryu, Min Hee;Lee, Hyo Suk;Bang, Yung Jue;Park, Jong Sup;Jin, Seung Won
    • IMMUNE NETWORK
    • /
    • v.1 no.2
    • /
    • pp.143-150
    • /
    • 2001
  • Background : Many investigators have found transforming growth factor-${\beta}1$ (TGF-${\beta}1$) to be elevated in tumors. Changes in responsiveness to TGF-${\beta}1$ have been linked to malignant transformation, tumor progression and tumor regression. Many malignant cell lines of epithelial or hematopoietic origin are refractory to the antiproliferative effects of TGF-${\beta}1$. However, a little is known about the association of TGF-${\beta}1$ with progression of malignant tumor. Methods : In this study, we measured the plasma level of TGF-${\beta}1$ in various cancer patients and evaluated the utility of plasma TGF-${\beta}1$ as a possible tumor marker. Plasma TGF-${\beta}1$ levels were measured using enzyme-linked immunosorbent assay in cancer patients and normal controls. Carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) as tumor marker were compared with TGF-${\beta}1$ in the aspects of sensitivity and specificity. Results : The mean of plasma TGF-${\beta}1$ levels was $1.219{\pm}0.834ng/ml$ in normal controls, $5.491{\pm}3.598ng/ml$ in breast cancer, $12.670{\pm}10.386ng/ml$ in lung cancer, $5.747{\pm}3.228ng/ml$ in hepatocellular carcinoma and $10.854{\pm}7.996ng/ml$ in cervical cancer. In comparison with CEA and AFP, TGF-${\beta}1$ is more sensitive. Conclusion : We conclude that the high levels of TGF-${\beta}1$ are common in the plasma of cancer patients. These results suggest that the plasma TGF-${\beta}1$ level can be a potent tumor marker in various cancer patients.

  • PDF

4-O-Methylhonokiol Protects HaCaT Cells from TGF-β1-Induced Cell Cycle Arrest by Regulating Canonical and Non-Canonical Pathways of TGF-β Signaling

  • Kim, Sang-Cheol;Kang, Jung-Il;Hyun, Jin-Won;Kang, Ji-Hoon;Koh, Young-Sang;Kim, Young-Heui;Kim, Ki-Ho;Ko, Ji-Hee;Yoo, Eun-Sook;Kang, Hee-Kyoung
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.417-426
    • /
    • 2017
  • 4-O-methylhonokiol, a neolignan compound from Magnolia Officinalis, has been reported to have various biological activities including hair growth promoting effect. However, although transforming growth factor-${\beta}$ (TGF-${\beta}$) signal pathway has an essential role in the regression induction of hair growth, the effect of 4-O-methylhonokiol on the TGF-${\beta}$ signal pathway has not yet been elucidated. We thus examined the effect of 4-O-methylhonokiol on TGF-${\beta}$-induced canonical and noncanonical pathways in HaCaT human keratinocytes. When HaCaT cells were pretreated with 4-O-methylhonokiol, TGF-${\beta}1$-induced G1/G0 phase arrest and TGF-${\beta}1$-induced p21 expression were decreased. Moreover, 4-O-methylhonokiol inhibited nuclear translocation of Smad2/3, Smad4 and Sp1 in TGF-${\beta}1$-induced canonical pathway. We observed that ERK phosphorylation by TGF-${\beta}1$ was significantly attenuated by treatment with 4-O-methylhonokiol. 4-O-methylhonokiol inhibited TGF-${\beta}1$-induced reactive oxygen species (ROS) production and reduced the increase of NADPH oxidase 4 (NOX4) mRNA level in TGF-${\beta}1$-induced noncanonical pathway. These results indicate that 4-O-methylhonokiol could inhibit TGF-${\beta}1$-induced cell cycle arrest through inhibition of canonical and noncanonical pathways in human keratinocyte HaCaT cell and that 4-O-methylhonokiol might have protective action on TGF-${\beta}1$-induced cell cycle arrest.