• Title/Summary/Keyword: TGF-$\beta$ receptors

Search Result 35, Processing Time 0.024 seconds

Analysis and characterization of the functional TGFβ receptors required for BMP6-induced osteogenic differentiation of mesenchymal progenitor cells

  • Zhang, Yan;Zhang, De-Ying;Zhao, Yan-Fang;Wang, Jin;He, Juan-Wen;Luo, Jinyong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • Although BMP6 is highly capable of inducing osteogenic differentiation of mesenchymal progenitor cells (MPCs), the molecular mechanism involved remains to be fully elucidated. Using dominant negative (dn) mutant form of type I and type II $TGF{\beta}$ receptors, we demonstrated that three dn-type I receptors (dnALK2, dnALK3, dnALK6), and three dn-type II receptors (dnBMPRII, dnActRII, dnActRIIB), effectively diminished BMP6-induced osteogenic differentiation of MPCs. These findings suggested that ALK2, ALK3, ALK6, BMPRII, ActRII and ActRIIB are essential for BMP6-induced osteogenic differentiation of MPCs. However, MPCs in this study do not express ActRIIB. Moreover, RNA interference of ALK2, ALK3, ALK6, BMPRII and ActRII inhibited BMP6-induced osteogenic differentiation in MPCs. Our results strongly suggested that BMP6-induced osteogenic differentiation of MPCs is mediated by its functional $TGF{\beta}$ receptors including ALK2, ALK3, ALK6, BMPRII, and ActRII.

Transforming Growth Factor-$\beta$ is a Possible Paracrine Mediator in the Human Endometrial Decidualization (인간자궁내막의 탈락막화 (Decudualization)에 있어서 TGF-$\beta$ (Transforming Growth Factor-$\beta$)의 역할)

  • Park, Dong-Wook;Choi, Dong-Soon;Kim, Mi-Ran;Hwang, Kyung-Joo;Jo, Mi-Yeong;Ahn, Seong-Hee;Min, Churl-K.;Ryu, Hee-Sug
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.1
    • /
    • pp.65-75
    • /
    • 2003
  • Objectives: To investigate the role of TGF (Transforming growth factor-$\beta$) involved in the paracrinic communication during decidualization between UEC (uterine epithelial cells) and USC (uterine stromal cells), we have employed a co-culture system composed of human endometrial epithelial and stromal cells in defined hormonal conditions. Design: In the co-culture, endometrial epithelial cells cultured in the matrigel-coated cell culture insert are seeded on top of the endometrial stromal cells cultured within a collagen gel. The co-culture was maintained for 48 hours under the following hormonal conditions: progesterone dominant condition (100 nM P4 and 1 nM E2) or estrogen-dominant condition (100 nM E2 and 1 nM P4). 10 ng/ ml HGF and/or 10 ng/ml TGF-$\beta$1 are added. Methods: RT-PCR is utilized to detect mRNAs quantitatively. Enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining are utilized to detect proteins in the tissue. Results: Prolactin mRNA is expressed in the co-cultured stromal cells under the progesterone dominant condition. TGF-$\beta$1 and its receptors are expressed in both the co-cultured epithelial and stromal cells irrespective of the steroid present, which is in contrast with no or negligible expression of TGF-$\beta$1 or its receptor in cells separately cultured. Both estrogen and progesterone significantly elevate the concentration of hepatocyte growth factor (HGF) in the conditioned medium of the co-culture with the value of 4, 325 pg/ml in E2-dominant and 2, 000 pg/ml in P4-dominant condition compare to 150 pg/ml in no hormone. In separately cultured stromal cells, administration of HGF induces the expression of TGF receptor 1 in both hormonal conditions, but induction of TGF receptor 2 is only manifest in the P4-dominant condition. Administration of TGF-$\beta$ and HGF directly induce the decidualization marker prolactin mRNA in separately cultured stromal cells. Conclusion: It is likely that steroid hormones induces prolactin mRNA indirectly by promoting the cell to cell communication between the stromal and the epithelial cells. TGF-$\beta$ and HGF are two possible paracrine mediators in the human endometrial decidualization.

Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells (폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능)

  • Jeong, Young-Seok;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2011
  • Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

Immunohistochemical Analysis of the Bullae in Patients with Primary Spontaneous Pneumothorax (원발성 기흉환자 폐기포의 면역조직화학적 분석)

  • 김광호;윤용한;김정택;백완기;김현태;김영삼;손국희;한혜승;박광원
    • Journal of Chest Surgery
    • /
    • v.36 no.2
    • /
    • pp.86-90
    • /
    • 2003
  • Bulla is an air-filled space within the lung parenchyma resulting from deterioration of the alveolar tissue. Molecular mechanism of the formation of the bulla is not well described. Fibroblast growth factor(FGF)-7, bone morphogenetic protein(BMP) receptor, and transforming growth factor(TGF)-$\beta$ receptor are known to have a stimulatory or inhibitory role in the lung formation. We investigated to see if these growth factor or cytokine receptors are involved in the bulla formation by immunohistochemical staining of bullous lung tissues from patients with primary spontaneous pneumothorax. Material and Method: Bullous lung tissues were obtained from 31 patients with primary spontaneous pneumothorax, including 30 males and 1 female from 15 to 39 years old. The bullous tissues were obtained by video-thoracoscopic surgery and/or mini-thoracotomy and fixed in formalin. Blocks of the specimens were embedded with paraffin and cut into 5-6 ${\mu}{\textrm}{m}$ thick slices. The sections were deparaffinized and hydrated and then incubated with primary antibodies against FGF-7, BMP-RII, or TGF-RII. Result: Of the 31 patients, 24 were TGF-RII positive including 18 strong and 6 weak positives. Observation with high magnification showed that strong immunostaining was detected in the boundary region between bullous and normal lung tissues. In contrast, all of the sections were negative with FGF-7 or BMP-RII antibodies. Conclusion: These results suggest that overexpression of TGF- P RII may be involved in the formation of bulla, although further molecular studies are needed to find out more detailed molecular mechanisms.

Kinetic Analysis of CpG-Induced Mouse B Cell Growth and Ig Production

  • Kim, Young-Ha;Lee, Sang-Hoon;Yoo, Yung-Choon;Lee, Jung-Lim;Park, Jong-Hwan;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.89-95
    • /
    • 2012
  • Immune cells express toll-like receptors (TLRs) and respond to molecular patterns of various pathogens. CpG motif in bacterial DNA activates innate and acquired immune systems through binding to TLR9 of immune cells. Several studies reported that CpG can directly regulate B cell activation, differentiation, and Ig production. However, the role of CpG in B cell growth and Ig production is not fully understood. In this study, we analyzed the effect of CpG on the kinetics of mouse B cell viability, proliferation, and Igs production. Overall, CpG enhanced mouse B cell growth and production of Igs in a dose-dependent manner. Unlike LPS, 100 nM CpG (high dose) did not support TGF-${\beta}1$-induced IgA and IgG2b production. Moreover, 100 nM CpG treatment abrogated either LPS-induced IgM or LPS/TGF-${\beta}1$-induced IgA and IgG2b production, although B cell growth was enhanced by CpG under the same culture conditions. We subsequently found that 10 nM CpG (low dose) is sufficient for B cell growth. Again, 10 nM CpG did not support TGF-${\beta}1$-induced IgA production but, interestingly enough, supported RA-induced IgA production. Further, 10 nM CpG, unlike 100 nM, neither abrogated the LPS/TGF-${\beta}1$- nor the LPS/RA-induced IgA production. Taken together, these results suggest that dose of CpG is critical in B cell growth and Igs production and the optimal dose of CpG cooperates with LPS in B cell activation and differentiation toward Igs production.

Upregulation of Renal Renin-Angiotensin System in Rats with Adriamycin-Induced Nephrosis

  • Kim, Soo-Wan;Lee, Jong-Un;Han, Sang-Woong;Ryu, Jun-Ho;Oh, Yoon-Wha;Kim, Nam-Ho;Choi, Ki-Chul;Kim, Ho-Jung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.2
    • /
    • pp.127-130
    • /
    • 2002
  • The present study was aimed to investigate whether the adriamycin-induced nephrosis is associated with an altered regulation of local renin-angiotensin system (RAS) in the kidney. Rats were subjected to a single injection of adriamycin (2 mg/kg body weight, IV) and kept for 6 weeks to allow the development of nephrosis. They were then divided into two groups, and supplied with and without cilazapril, an angiotensin converting enzyme (ACE) inhibitor, in drinking water (100 mg/l) for additional 6 weeks. Another group without adriamycin-treatment served as control. The mRNA expression of renin, ACE, type 1 and type 2 angiotensin II receptors (AT1R, AT2R), and transforming growth factor $(TGF)-{\beta}1$ was determined in the cortex of the kidney by reverse transcription-polymerase chain reaction. Adriamycin treatment resulted in heavy proteinuria. Accordingly, the mRNA expression of renin, ACE, and AT1R was increased in the renal cortex, while that of AT2R was decreased. Co-treatment with cilazapril attenuated the degree of proteinuria. While not affecting the altered expression of renin, cilazapril decreased the expression of ACE to the control level. Cilazapril further increased the expression of AT1R, while it restored the decreased expression of AT2R. The expression of $(TGF)-{\beta}1$ was increased by the treatment with adriamycin, which was abolished by cilazapril. An altered expression of local RAS components may be causally related with the development of adriamycin-induced nephrosis, in which AT1R is for and AT2R is against the development of nephrosis.

Gene Expression of Smad3 and Estrogen Receptor-related $Receptor\;{\beta}$ like 1 in Sea Urchin, Strongylocentrotus nudus (둥근성게(Strongylocentrotus nudus)의 Smad3와 Estrogen Receptor-related $Receptor\;{\beta}$ like 1 유전자 발현)

  • Jun, Yu-Jung;Sohn, Young-Chang
    • Development and Reproduction
    • /
    • v.11 no.1
    • /
    • pp.43-47
    • /
    • 2007
  • Smad proteins mediate transforming growth $factor(TGF)-{\beta}$ signaling and play a pivotal role in embryonic development. The estrogen receptor-related receptors(ERRs), which are structurally similar to estrogen receptors, are members of orphan nuclear receptor in the nuclear receptor superfamily and their functions are known to be involved in the formation of extra-embryonic ectoderm. To investigate the involvement of Smad3 and $ERR{\beta}$ like 1 in reproductive activities and embryogenesis in marine invertebrate, we examined gene expression of Smad3 and $ERR{\beta}$ like 1 in Strongylocentrotus nudus during their seasonal changes and embryonic development using real-time polymerase chain reaction. The Smad3 mRNA levels in gonad showed an increasing pattern from February to June 2004 but decreased at August(spawning season) followed by an elevation of the levels at October and December 2004. The mRNA levels of the $ERR{\beta}$ like 1 significantly elevated during the spawning season. During embryonic development, Smad3 mRNA levels at $8{\sim}16$ cell stages were significantly higher than those of other stages, whereas the mRNA of the $ERR{\beta}$ like 1 was significantly high levels at late development stages, i.e., blastular, gastrula and plutei stages. These results suggest that the Smad3 could be involved at least in part in the early cleavage stages and the $ERR{\beta}$ like 1 may play an important role in the spawning season and late developmental stage in the sea urchin.

  • PDF

Isoflavones Extracted from Sophorae fructus Upregulate IGF-1 and TGF-$\beta$ and Inhibit Osteoclastogenesis in Rat Born Marrow Cells

  • Joo, Seong-Soo;Won, Tae-Joon;Kang, Hee-Cheol;Lee, Do-Ik
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.99-105
    • /
    • 2004
  • Isoflavones have been a central subject in research on the natural phytoestrogens found in Leguminosae. Their effects on bone formation and remodeling are important in that they can act like estrogen by binding on estrogen receptors on the target cell surface. We, therefore, believed that isoflavones may help in the treatment of patients with estrogen deficiency disease such as estrogen replacement therapy (ERT) for osteoporosis. As commonly known, osteoporosis is one of the hormonal deficiency diseases, especially in menopausal women. When estrogen is no longer produced in the body a remarkable bone remodeling process occurs, and the associated events are regulated by growth factors in the osteoblast lineage. In the present study, we investigated whether isoflavones (Isocal) extracted from Sophorae fructus affect the growth factors IGF-I and TGF-$\beta$ that have been known to be related with bone formation. In the study, we found that the active control (PIII) effectively enhanced the level of nitric oxide (NO) and growth factors, and thereby inhibited osteoclastogenesis. The most efficient concentration was $10^{-8}$% within five days, whereas the comparative control (soybean isoflavone) was not as effective even at a lower concentration. In conclusion, the products which contain enriched glucosidic isoflavone and nutrient supplements such as shark cartilage and calcium can be used for osteoporosis therapy by enhancing the production of IGF-I and TGF-$\beta$. Furthermore, the NO produced through endothelial constitutive NO synthase (ecNOS) may playa role in inhibiting bone reabsorption.

Effects of TGF-$\beta$3 on Epithelial-mesenchymal transformation and Epidermal growth factor receptor expression in palatogenesis of chicken embryo (계태아 발생시 TGF-$\beta$3가 구개판 내측돌기상피의 상피간엽변환 및 상피성장인자수용체 발현에 미치는 영향)

  • Yang Byoung-Eun;Lee Jong-Ho
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.1
    • /
    • pp.13-26
    • /
    • 2001
  • Cleft lip and/or palate is the congenital orofacial malformation most commonly occurred in humans, The disease is multifactorial and is probably caused by genetic and/or environmental factors, So, there are many problems in research concerning etiology and in treatment of the disease, Even the most practiced and sophisticated methods of surgical repair are necessarily followed by scar contraction and fibrosis, which result in skeletal defects, dental abnormalities, cosmetic disfigurement, and speech impairment, As a result, Fetal surgery can be considered but practiced rarely when the deformity is not fatal to life, And treatment of cleft palate is performed in the form of medicine projection into uterus in animal experiments, Many studies show that growth factor and its receptor emerge from the developing palate; and the epidermal growth factor receptors have a important role in craniofacial development and in palatal fusion, The palatal morphogenesis of the avine is different from the mammal's; it takes the form of physiologic cleft palate, Recently, cleft palate fusion experiment was performed when the avine were in the period of palate formation through the exogenous TGF-β3 addition, and it showed that the exogenous TGF-β3 makes fusion of divided palate through certain process when cleft palate is occurred in palatal formation, In this study, I had the conformation of the fusion of cleft palate through the addition of TGF-β in case of chicken embryo, and observed the effect of TGF-β in EGF receptor distribution, And the following is the results of this study, 1. In case of the TGF-βl and β3 addition group, there was the decrease of EGFR(Epidermal Growth Factor Receptor) immunoreactivity in mesenchymal cells beneath the medial edge epithelium and also in epithelial mesenchymal interface which is between medial edge epithelium and nasal septum in 72 hours, 2, The immunoreactivity of the control group resembles that of normal chicken embryo palate in development, 3. In the view through fluorescence confocal microscopy, there was confluence in TGF-β3 addition group, This shows that the confluence induced by exogenous TGF-β3 is related to EGFR expression in palate of chicken embryo, which is a physiologic cleft palate model.

  • PDF

Branched N-glycans and their implications for cell adhesion, signaling and clinical applications for cancer biomarkers and in therapeutics

  • Taniguchi, Naoyuki;Korekane, Hiroaki
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.772-781
    • /
    • 2011
  • Branched N-glycans are produced by a series of glycosyltransferases including N-acetylglucosaminyltransferases and fucosyltransferases and their corresponding genes. Glycans on specific glycoproteins, which are attached via the action of glycosyltransferases, play key roles in cell adhesion and signaling. Examples of this are adhesion molecules or signaling molecules such as integrin and E-cadherin, as well as membrane receptors such as the EGF and TGF-${\beta}$ receptors. These molecules also play pivotal roles in the underlying mechanism of a variety of disease such as cancer metastasis, diabetes, and chronic obstructive pulmonary disease (COPD). Alterations in the structures of branched N-glycans are also hall marks and are useful for cancer biomarkers and therapeutics against cancer. This mini-review describes some of our recent studies on a functional glycomics approach to the study of branched N-glycans produced by N-acetylglucosaminyltransferases III, IV, V and IX (Vb) (GnT-III, GnT-IV, V and IX (Vb)) and fucosyltransferase 8 (Fut8) and their pathophysiological significance, with emphasis on the importance of a systems glycobiology approach as a future perspective for glycobiology.