DOI QR코드

DOI QR Code

Kinetic Analysis of CpG-Induced Mouse B Cell Growth and Ig Production

  • Kim, Young-Ha (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Sang-Hoon (Department of Microbiology, College of Medicine, Konyang University) ;
  • Yoo, Yung-Choon (Department of Microbiology, College of Medicine, Konyang University) ;
  • Lee, Jung-Lim (Department of Microbiology, College of Medicine, Konyang University) ;
  • Park, Jong-Hwan (Department of Biochemistry, College of Medicine, Konyang University) ;
  • Park, Seok-Rae (Department of Microbiology, College of Medicine, Konyang University)
  • Received : 2012.04.27
  • Accepted : 2012.05.11
  • Published : 2012.06.30

Abstract

Immune cells express toll-like receptors (TLRs) and respond to molecular patterns of various pathogens. CpG motif in bacterial DNA activates innate and acquired immune systems through binding to TLR9 of immune cells. Several studies reported that CpG can directly regulate B cell activation, differentiation, and Ig production. However, the role of CpG in B cell growth and Ig production is not fully understood. In this study, we analyzed the effect of CpG on the kinetics of mouse B cell viability, proliferation, and Igs production. Overall, CpG enhanced mouse B cell growth and production of Igs in a dose-dependent manner. Unlike LPS, 100 nM CpG (high dose) did not support TGF-${\beta}1$-induced IgA and IgG2b production. Moreover, 100 nM CpG treatment abrogated either LPS-induced IgM or LPS/TGF-${\beta}1$-induced IgA and IgG2b production, although B cell growth was enhanced by CpG under the same culture conditions. We subsequently found that 10 nM CpG (low dose) is sufficient for B cell growth. Again, 10 nM CpG did not support TGF-${\beta}1$-induced IgA production but, interestingly enough, supported RA-induced IgA production. Further, 10 nM CpG, unlike 100 nM, neither abrogated the LPS/TGF-${\beta}1$- nor the LPS/RA-induced IgA production. Taken together, these results suggest that dose of CpG is critical in B cell growth and Igs production and the optimal dose of CpG cooperates with LPS in B cell activation and differentiation toward Igs production.

Keywords

References

  1. Akira, S., S. Uematsu, and O, Takeuchi. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  2. Palm, N. W., and R. Medzhitov. 2009. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev. 227: 221-233. https://doi.org/10.1111/j.1600-065X.2008.00731.x
  3. Ruprecht, C. R., and A. Lanzavecchia. 2006. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur. J. Immunol. 36: 810-816. https://doi.org/10.1002/eji.200535744
  4. Pone, E. J., Z. Xu, C. A. White, H. Zan, and P. Casali. 2012. B cell TLRs and induction of immunoglobulin class-switch DNA recombination. Front Biosci. 17: 2594-2615. https://doi.org/10.2741/4073
  5. Hardenberg, G., L. Planelles, C. M. Schwarte, L. van Bostelen, T. Le Huong T M. Hahne, and J. P. Medema. 2007. Specific TLR ligands regulate APRIL secretion by dendritic cells in a PKR-dependent manner. Eur. J. Immunol. 37: 2900-2911. https://doi.org/10.1002/eji.200737210
  6. Fagarasan, S., and T. Honjo. 2000. T-Independent immune response: new aspects of B cell biology. Science 290: 89-92. https://doi.org/10.1126/science.290.5489.89
  7. Gururajan, M., J. Jacob, and B. Pulendran. 2007. Toll-like receptor expression and responsiveness of distinct murine splenic and mucosal B-cell subsets. PLoS One 2: e863. https://doi.org/10.1371/journal.pone.0000863
  8. Peng, S. L. 2005. Signaling in B cells via Toll-like receptors. Curr. Opin. Immunol. 17: 230-236. https://doi.org/10.1016/j.coi.2005.03.003
  9. Bekeredjian-Ding, I., and G. Jego. 2009. Toll-like receptors-- sentries in the B-cell response. Immunology 128: 311-323. https://doi.org/10.1111/j.1365-2567.2009.03173.x
  10. Krieg, A. M., A. K. Yi, S. Matson, T. J. Waldschmidt, G. A. Bishop, R. Teasdale, G. A. Koretzky, and D. M. Klinman. 1995. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374: 546-549. https://doi.org/10.1038/374546a0
  11. Hartmann, G., and A. M. Krieg. 2000. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164: 944-953. https://doi.org/10.4049/jimmunol.164.2.944
  12. Hartmann, G., R. D. Weeratna, Z. K. Ballas, P. Payette, S. Blackwell, I. Suparto, W. L. Rasmussen, M. Waldschmidt, D. Sajuthi, R. H. Purcell, H. L. Davis, and A. M. Krieg. 2000. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164: 1617-1624. https://doi.org/10.4049/jimmunol.164.3.1617
  13. Jung, J., A. K. Yi, X. Zhang, J. Choe, L. Li, and Y. S. Choi. 2002. Distinct response of human B cell subpopulations in recognition of an innate immune signal, CpG DNA. J. Immunol. 169: 2368-2373. https://doi.org/10.4049/jimmunol.169.5.2368
  14. Liu, N., N. Ohnishi, L. Ni, S. Akira, and K. B. Bacon. 2003. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4: 687-693. https://doi.org/10.1038/ni941
  15. Peng, S. L., J. Li, L. Lin, and A. Gerth. 2003. The role of T-bet in B cells. Nat. Immunol. 4: 1041.
  16. Rifkin, I. R., and A. Marshak-Rothstein. 2003. T-bet: the Toll-bridge to class-switch recombination? Nat. Immunol. 4: 650-652. https://doi.org/10.1038/ni0703-650
  17. Jegerlehner, A., P. Maurer, J. Bessa, H. J. Hinton, M. Kopf, and M. F. Bachmann. 2007. TLR9 signaling in B cells determines class switch recombination to IgG2a. J. Immunol. 178: 2415-2420. https://doi.org/10.4049/jimmunol.178.4.2415
  18. Lin, L., A. J. Gerth, and S. L. Peng. 2004. CpG DNA redirects class-switching towards 􀙘Th1-like􀙙 Ig isotype production via TLR9 and MyD88. Eur. J. Immunol. 34: 1483-1487. https://doi.org/10.1002/eji.200324736
  19. Yi, A. K., M. Chang, D. W. Peckham, A. M. Krieg, and R. F. Ashman. 1998. CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J. Immunol. 160: 5898-5906.
  20. Janossy, G., J. Snajdr, and M. Simak-Ellis. 1976. Patterns of B-lymphocyte gene expression elicited by lipopolysaccharide mitogen. Immunology 30: 799-810.
  21. Poltorak, A., X. He, I. Smirnova, M. Y. Liu, C. Van Huffel, X. Du, D. Birdwell, E. Alejos, M. Silva, C. Galanos, M. Freudenberg, P. Ricciardi-Castagnoli, B. Layton, and B. Beutler. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085-2088. https://doi.org/10.1126/science.282.5396.2085
  22. Kim, P. H., and M. F. Kagnoff. 1990. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J. Immunol. 145: 3773-3778.
  23. Coffman, R. L., D. A. Lebman, and B. Shrader. 1989. Transforming growth factor beta specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. J. Exp. Med. 170: 1039-1044. https://doi.org/10.1084/jem.170.3.1039
  24. Lebman, D. A., and J. S. Edmiston. 1999. The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes. Microbes Infect. 1: 1297-1304. https://doi.org/10.1016/S1286-4579(99)00254-3
  25. Tokuyama, H., and Y. Tokuyama. 1995. Endogenous cytokine expression profiles in retinoic acid-induced IgA production by LPS-stimulated murine splenocytes. Cell Immunol. 166: 247-253. https://doi.org/10.1006/cimm.1995.9973
  26. Tokuyama, Y., and H. Tokuyama. 1996. Retinoids as Ig isotype- switch modulators. The role of retinoids in directing isotype switching to IgA and IgG1 (IgE) in association with IL-4 and IL-5. Cell Immunol. 170: 230-234. https://doi.org/10.1006/cimm.1996.0156

Cited by

  1. TLR9 Signaling Suppresses the Canonical Plasma Cell Differentiation Program in Follicular B Cells vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.02281
  2. CpG Adjuvant in Allergen-Specific Immunotherapy: Finding the Sweet Spot for the Induction of Immune Tolerance vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.590054