• Title/Summary/Keyword: TFRC

Search Result 36, Processing Time 0.043 seconds

TFRC Congestion Control for Mobile Streaming Services Based on Guaranteed Minimum Transmission Rate (모바일 스트리밍 서비스를 위한 최소전송률 보장 기반 TFRC 혼잡제어)

  • Lee, Kang Seob;Choi, Seung-Sik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.3
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper we propose a TFRC(TCP Friendly Rate Control) which guarantees a minimum rate in order to improve the efficiency of the previous TFRC which cannot distinguish congestion losses and wireless losses and decreases throughput both in wired and wireless networks. This TFRC technique is able to guarantee a minimum rate for video by restricting a loss event rate with packet loss probability about existing TFRC and constraining a rate reduction from the feedback timeout. When we experimented both the existing TFRC and the new one with TCP in the same network, we found that the latter is better than the former. Consequently, it shows that the proposed TFRC can improve video streaming quality using a guaranteed minimum transmission rate.

An Enhanced TFRC Congestion Control Mechanism for Mobile Environments (무선 이동 환경을 위한 개선된 TFRC 혼잡제어 메커니즘)

  • 최미라;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.6
    • /
    • pp.743-754
    • /
    • 2003
  • TFRC(TCP-Friendly Rate Control) is proposed to satisfy the demands of multimedia applications while being reasonably fair when competing for bandwidth with TCP flows[1-3]. However, TFRC has a shortcoming that the fairness and throughput are degraded when the mobile host using TFRC experiences handoffs. This paper proposes a new control mechanism based on TFRC, which deals with the congestion caused by handoffs as well as the losses caused during the handoffs. The simulation results show that our mechanism achieves better throughput and fairness compared to TFRC for repeated handoffs.

Approach to Improving the performance of TFRC through Minimumrate Guarantee in Wireless Network (무선 네트워크에서 최소전송률 보장을 통한 TFRC의 성능 향상 기법)

  • Lee, Kang-Seob;Choi, Seung-Sick
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.453-455
    • /
    • 2012
  • 본 논문에서는 유 무선 이종망의 네트워크에서 혼잡손실과 무선손실의 구별을 하지 못하고 전송률을 감소하는 TFRC의 성능을 개선하기 위한 최소 전송률을 보장하는 TFRC 제어방법을 제안한다. 제안 하는 TFRC기법은 기존의 TFRC 기법의 패킷손실률에 따른 loss event rate를 제한하고 피드백 타임아웃에 따른 전송률 감소를 제한하여 비디오의 최소전송률을 보장하는 방법이다. TCP와 제안하는 TFRC를 같은 네트워크망에서 경쟁하는 환경으로 실험 했을 때 기존의 TFRC와 비교해서 제안한 TFRC의 전송률이 보장되어 더 좋은 성능을 보였다. 무선구간에서의 손실까지도 혼잡손실로 판단하고 전송률을 감소시켜 다중 네트워크에서 대역폭을 보장받지 못하는 TFRC기법을 최소전송률 보장을 통해 비디오 스트리밍 서비스를 제공함으로써 서비스의 품질을 보장한다.

TFRC Control Method Guaranteed Minimumrate in Wireless-LAN (WLAN에서 최소전송률을 보장하는 TFRC 제어방법)

  • Lee, Kang-Seob;Choi, Seung-Sick
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1494-1497
    • /
    • 2011
  • 본 논문에서는 유 무선 이종망의 네트워크에서 혼잡손실과 무선손실의 구별을 하지 못하고 전송률을 감소하는 TFRC의 성능을 개선하기 위한 최소 전송률을 보장하는 TFRC 제어방법을 제안한다. 제안하는 TFRC기법은 기존의 TFRC기법의 패킷손실률에 따른 loss event rate를 제한하고 피드백 타임아웃에 따른 전송률 감소를 제한하여 비디오의 최소전송률을 보장하는 방법이다. TCP와 제안하는 TFRC를 같은 네트워크망에서 경쟁하는 환경으로 실험 했을 때 기존의 TFRC와 비교해서 제안한 TFRC의 전송률이 보장되어 더 좋은 성능을 보였다. 무선구간에서의 손실까지도 혼잡손실로 판단하고 전송률을 감소시켜 다중 네트워크에서 대역폭을 보장받지 못하는 TFRC기법을 최소전송률 보장을 통해 비디오 스트리밍 서비스를 제공함으로써 서비스의 품질을 보장한다.

TCP-Friendly Rate Control for Vertical Handover over Wireless Heterogeneous Network (무선 이종망 환경에서 Vertical Handover를 위한 TCP-Friendly 비트율 제어)

  • Pyun, Jae-Young
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.33-40
    • /
    • 2008
  • Streaming video has become a popular form of transferring media over the wired/wireless network. TCP-friendly rate control (TFRC) is used as a streaming media transport protocol. Using the TCP congestion response function and current network conditions, TFRC adjusts its sending rate to yield the maximum TCP-friendly throughput. Since TFRC was designed for applications that would prefer to maintain a slowly-changing sending rate, it is less responsive to changes in handover between wireless heterogeneous networks such as 3G network, WLAN, and so on. This paper shows a new TFRC method for vertical handover over wireless heterogeneous network. The proposed TFRC method has features of low quality interruption and fast rate adaptation to a new target network. The simulation results show that the proposed one provides better QoS and throughput support than the traditional TFRC scheme during vertical handover.

Loss Discrimination Mechanism for Improving the Performance of TFRC in Last-hop Wireless Networks (라스트 홉 무선 네트워크에서 TFRC의 성능향상을 위한 손실 구별 기법)

  • Jeong, Kyu-Min;Koo, Ja-Hon;Chung, Kwang-Sue
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.227-231
    • /
    • 2010
  • The TFRC is a congestion control mechanism which supports the requirements of video streaming applications and controls its sending rate by using the information such as loss event rate and RTT (round-trip time). However, TFRC has a performance degradation in wireless networks because it performs congestion control by judging all the losses occurred in wireless network as a congestion signal. In this paper, we propose new loss discrimination mechanism which is using ECN in order to solve the performance degradation of TFRC. Through the results of simulation, we proved that the proposed mechanism can improve the performance of TFRC.

Improving the Fairness of TFRC Congestion Control Protocol (TFRC 혼잡제어 프로토콜 공정성 개선 방안)

  • 조경연;장주욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10c
    • /
    • pp.355-357
    • /
    • 2001
  • TFRC(TCF-friendly Rate Control) 혼잡제어는 연속적인 재생을 필요로 하는 멀티미디어 서비스를 위한 TCP-friendly 알고리즘이다. 이러한 TCP-friendly 알고리즘의 성능을 결정하는 가장 중요한 요인으로 기존 TCP 혼잡제어 알고리즘을 이용하는 트래픽과의 전송대역폭에 대한 공정성(fairness)이다. TFRC 혼잡제어 알고리즘에서는 이러한 공정성을 만족시키기 위하여 TCP를 모델링한 식에 의하여 전송률을 결정한다. 그러나 TFRC 혼잡제어는 혼잡이 심한 네트워크 상황에서는 공정성이 급격히 떨어진다. 본 논문에서는 TFRC 혼잡제어알고리즘의 전송률 결정방법의 개선을 통하여, 높은 손실률을 보이는 혼잡한 네트워크상황에서 공정성이 떨어지는 문제를 해결한다.

  • PDF

Capacity Analysis of Internet Protocol Television (IPTV) over IEEE 802.11ac Wireless Local Area Networks (WLANs)

  • Virdi, Chander Kant;Shah, Zawar;Levula, Andrew;Ullah, Imdad
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Internet Protocol Television (IPTV) has emerged as a personal entertainment source for home users. Streaming IPTV content over a wireless medium with good Quality of Service (QoS) can be a challenging task as IPTV content requires more bandwidth and Wireless Local Area Networks (WLANs) are susceptible to packet loss, delay and jitter. This research presents the capacity of IPTV using User Datagram Protocol (UDP) and TCP Friendly Rate Control (TFRC) over IEEE 802.11ac WLANs in good and bad network conditions. Experimental results show that in good network conditions, UDP and TFRC could accommodate a maximum of 78 and 75 Standard Definition Television (SDTV) users, respectively. In contrast, 15 and 11 High-Definition Television (HDTV) users were supported by UDP and TFRC, respectively. Performance of UDP and TFRC was identical in bad network conditions and same number of SDTV and HDTV users were supported by TFRC and UDP. With background Transmission Control Protocol (TCP) traffic, both UDP and TFRC can support nearly the same number of SDTV users. It was found that TFRC can co-exist fairly with TCP by giving more throughput to TCP unlike UDP.

A Steady State Analysis of TCP Rate Control Mechanism on Packet loss Environment (전송 에러를 고려한 TCP 트래픽 폭주제어 해석)

  • Kim, Dong-Whee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • In this Paper, Analyse the Steady State Behavior of TCP and TFRC with Packet Error when both TCP and TFRC Flows Co-exist in the Network. First, Model the Network with TCP and TFRC Connections as a Discrete Time System. Second, Calculate Average Round Trip Time of the Packet Between Source and Destination on Packet Loss Environment. Then Derive the Steady State Performance i.e. Throughput of TCP and TFRC, and Average Buffer Size of RED Router Based on the Analytic Network Model. The Throughput of TCP and TFRC Connection Decrease Rapidly with the Growth of Sending Window Size and Their Transmission Rate but Their Declines become Smoothly when the Number of Sending Window Arrives on Threshold Value. The Average Queue Length of RED Router Increases Slowly on Low Transmission Rate but Increases Rapidly on High Transmission Rate.

TFRC Flow Control Mechanism based on RTP/RTCP for Real-time Traffic Transmission (실시간 트래픽 전송을 위한 RTP/RTCP의 TFRC 흐름제어 기법)

  • Choi, Hyun-Ah;Song, Bok-Sob;Kim, Jeong-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.8
    • /
    • pp.57-64
    • /
    • 2008
  • In this paper, to resolve the problem caused by a network state information inaccuracy the slow delay time that conclusion of network state of one way delay time which accuracy delay time information, according to network state changes on the based TFRC flow control, and suggest that flow control mechanism to adjust transfer rate fit of real time multimedia data. In simulation, to measure of netowork state information that on the average about 12% difference of compared RTT and $OWD{\times}2$. When used RTT, used fair bandwidth TFRC much better than TCP about 32%, when used OWD, difference about 3% used fair bandwidth. Thus, conclusion of accuracy network state that used fair bandwidth according to network state changes on the based TFRC, users can support service of high quality that flow control mechanism to adjust transfer rate fit of real time data.