DOI QR코드

DOI QR Code

A Steady State Analysis of TCP Rate Control Mechanism on Packet loss Environment

전송 에러를 고려한 TCP 트래픽 폭주제어 해석

  • 김동휘 (대구대학교 컴퓨터.IT공학부)
  • Received : 2017.01.06
  • Accepted : 2017.01.23
  • Published : 2017.02.28

Abstract

In this Paper, Analyse the Steady State Behavior of TCP and TFRC with Packet Error when both TCP and TFRC Flows Co-exist in the Network. First, Model the Network with TCP and TFRC Connections as a Discrete Time System. Second, Calculate Average Round Trip Time of the Packet Between Source and Destination on Packet Loss Environment. Then Derive the Steady State Performance i.e. Throughput of TCP and TFRC, and Average Buffer Size of RED Router Based on the Analytic Network Model. The Throughput of TCP and TFRC Connection Decrease Rapidly with the Growth of Sending Window Size and Their Transmission Rate but Their Declines become Smoothly when the Number of Sending Window Arrives on Threshold Value. The Average Queue Length of RED Router Increases Slowly on Low Transmission Rate but Increases Rapidly on High Transmission Rate.

본 논문에서는 TCP 연결 및 TFRC 연결이 하나의 병목 링크를 공유하는 네트워크에서 패킷 전송시 에러가 발생하는 경우 TCP 및 TFRC의 정상상태 동작을 해석한다. 먼저 네트워크를 TCP 연결 및 TFRC 연결이 공존하는 이산시간 시스템으로 모델화한다. 두 번째 패킷 손실이 있다는 가정 하에 송신측과 수신측 사이의 패킷의 평균 라운드 트립 시간을 계산한다. 그리고 제시한 네트워크 모델을 이용하여 정상상태의 TCP 연결 및 TFRC 연결의 스루풋, RED 라우터의 평균 큐 길이를 계산한다. 계산결과 TCP 및 TFRC 연결의 스루풋은 송신측의 윈도우 개수가 증가할수록, 전송용량이 높을수록 급격히 감소하지만 송신측 윈도우 개수가 일정 수준을 넘어가면 완만하게 감소하고 있다. RED 라우터의 평균 큐 길이는 전송속도가 저속이면 완만하게 증가하고 있으나 전송속도가 빨라지면 급격하게 증가하고 있다.

Keywords

References

  1. Handly, M., Floyd, S., Padhye, J. and Widmer, J., "TCP Friendly Rate Control (TFC): Protocol Specification," Request for Comments(RFC) 5348, 2008.
  2. Mohamed, M. A., Bahget, W. M. and Mohamed, S.S., “A Performance Evaluation for Rate Adaptation Algorithms in IEEE 802.11 Wireless Networks,” International Journal of Computer Applications(0975-8887), Vol. 99, No. 4, pp. 54-59, August 2014. https://doi.org/10.5120/17365-7884
  3. Balakoteswara, P. and Bindu, C. S., "Simulation Based Analysis of TCP Friendly Rate Control in Wired Environment," Journal of Network Communications and Emerging Technologies(JNCET), Vol. 2, pp. 68-71, May 2015.
  4. Kai, M., “A Logarithmic Slow-Start Algorithm of Tcp-Vegas in Ip Networks,” Applied Mathematics and Information Sciences, Vol. 7, No. 2, pp. 599-605, 2013. https://doi.org/10.12785/amis/070224
  5. Sreekanth, B., Panchakshari, B. and Bindu, C. S., "Performance Evaluation of TCP Congestion Control Mechanisms in Wired Networks," I-Manager's Journal on Computer Science 2.3, pp. 11-16, Sep-Nov 2014.
  6. Henderson, T., Floyd, S., Gurtov, A. and Nishida, Y., "The New Reno Modification to TCP's Fast Recovery Algorithm," Request for Comments(RFC) 6582, April 2012.
  7. Reza, M. and Kourdy, R., “Tcp-New Reno Buffer Management in Network on Chip,” Journal of Computing, Vol. 4, No. 7, pp. 128-130, Jul. 2012.
  8. Kim, T.H., Choi, H.L., Kim, J.J., Park, B.K., Choi, S.P., Moon, Y.S. and Lee, B.H., “A Study on an IP-RFID Based Container Monitoring,” The Journal of Internet Electronic Commerce Research, Vol. 16, No. 5, pp. 63-79, October 2016.
  9. Choe, J.M., “The Effects of IS Strategic Alignment on the Development of IT Infrastructure: The Roles of Strategic Performance Measurement Systems,” The Journal of Information Systems, Vol. 22, No. 1, pp. 89-116, 2013. https://doi.org/10.5859/KAIS.2013.22.1.89
  10. Low, S. H., Paganini, F. and Doyle, J. C., "Internet Congestion Control," IEEE Control Systems Magazine, Vo. 22, pp. 28-43, Feb. 2002.
  11. Garetto, M., Cigno, R.L., Meo, M. and Marsan, M. A., "A Detailed and Accurate Closed Queueing Network Model of Many Interacting TCP Flows," in Proceeding of INFOCOM 2001, pp. 1706-1715, Apr. 2001.
  12. Floyd, S. and Jacobson, V., "Random Early Detection Gateways for Congestion Avoidance," IEEE/ACM Transactions on Networking, Vol. 1, pp. 397-413, Aug. 1993. https://doi.org/10.1109/90.251892