• Title/Summary/Keyword: TEM cell.

Search Result 422, Processing Time 0.03 seconds

Studies on Toxicological Evaluation of Freshwater Sediment using a PLHC-1 Cell Comet Assay (PLHC-1세포주의 Comet assay를 이용한 하천 퇴적토의 생태독성평가)

  • Bak, Jeong-Ah;Hwang, In-Young;Baek, Seung-Hong;Kim, Young-Sug
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2011
  • In this study, the Comet assay (evaluation of DNA damage) used the fish hepatocellular carinoma cell, PLHC-1, was tried to the sediment extract obtained from freshwater to understand its applicability as a tool for monitoring sediment toxicity. In parallel, induced EROD (7-ethoxyresorufin- O-deethylase) activity and DNA damage (TEM values) in PLHC-1 cells were measured for establishing the tandem endpoints of the PLHC-1cell test to test the ecotoxicity of sediment. Among several study sites in a small river passed through downtown and industrial park area, one of them, site B, showed a higher level of EROD activity and DNA damage than other sites. It indicates that a tandem endpoints of PLHC-1 cells could be useful tools for assessing the toxicity of sediment. The sensitivity of Comet assay with PLHC-1 cells was a little higher than that with a blood cell of frog tadpoles to the solvent extract of sediment. According to the results, a PLHC-1 cell-Comet assay could be used as a useful tool for evaluating ecotoxicity of the freshwater sediment. In addition, more detailed studies are needed to the contaminated site.

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

Synthesis and Characterization of Pt based Alloy Catalysts for Direct Ethanol Fuel Cell (직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석)

  • Kim, Yi-Young;Kim, Soo-Kil;Han, Jong-Hee;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2008
  • Though ethanol can theoretically generate 12 electrons during oxidation to carbon dioxide, the complete oxidation of ethanol is hard to achieve due to the strong bond between the two carbons in its molecular structure. Therefore, development of high activity catalyst for ethanol oxidation is necessary for the commercialization of direct ethanol fuel cell. In this study, some binary and ternary electrocatalysts of PtSn/C and PtSnAu/C have been synthesized and characterized. The catalysts were fabricated with modified polyol method with the amounts of 20 wt%, where the Pt : Sn ratios in the PtSn/C were 1 : 0, 4 : 1, 3 : 1, 2 : 1, 1.5 : 1, 1 : 1, 1 : 1.5 and Pt:Sn:Au ratios in the PtSnAu/C were 5 : 5 : 0, 5 : 4 : 1, 5 : 3 : 2, 5 : 2 : 3. From the XRD and TEM analysis results, the catalysts were found to have face centered cubic structure with particle size of around $1.9{\sim}2.4\;nm$. The activity in the ethanol oxidation was examined with cyclic voltammetry and the results indicated that PtSn(1.5 : 1)/C and PtSnAu(5 : 2 : 3)/C had the highest activity in each catalyst system. Further tests with single cell were performed with those catalysts. It was found that PtSn/C(1.5 : 1) exhibited the best performance while the long term stability of PtSnAu/C(5 : 2 : 3) is better than PtSn/C(1.5 : 1).

Electron microscopic studies on Flavobacterium branchiophila in experimentally induced gill disease of rainbow trout (세균성(細菌性) 아가미병(病)에 실험적(實驗的)으로 감염(感染)된 무지개송어에 있어서 Flavobacterium branchiophila에 대한 전자현미경학적(電子顯微鏡學的) 연구(硏究))

  • Heo, Gang-joon
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.381-387
    • /
    • 1992
  • Gill epithelia of normal rainbow trout fingerlings and abnormal ones suffering bacterial gill disease by experimental infection were examined by transmitting electron microscopy (TEM) and scanning electron microscopy (SEM). TEM observations revealed that Flavobacterium branchiophila consisted of slender rods measuring 0.5 by 5 to $8{\mu}m$, and they had which were long, thin, flexible filaments measuring approximately 4 nm by $1{\mu}m$, and packed together to organize into bundles. Morphological alterations of the diseased epithelia started at hypertrophy of the lamellar epithelium. F branchiophila attached to the gill surface of infected fish through pili with a regular distance, and did not invade into gill tissue. In SEM observations, normal surface ultrastructure of epithelial cell in the outermost layer were characterized by a typical labyrinth-like structure branching and anastomosing microridges on the cell surface. Hyperplastic lesions in experimentally infected gill were most serious at near the tips. Each filament exhibited a club-like, and fusion between the filaments was sometimes observed at their tips. On the surface of gill filaments, thread-like bacterial cells attached and were entangled. The bacterial cells almost covered the surface. After immersion in 5 % NaCl, the cell of F branchiophila, however, appeared to be indeterminate shape.

  • PDF

Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC (Mn조성비(組成比)가 PEMFC용(用) Pt/C 전극촉매(電極觸媒) 특성(特性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.34-40
    • /
    • 2012
  • $Pt_{10}$/C, $Pt_9Mn_1$/C, $Pt_7Mn_3$/C electrocatalysts for Polymer Electrolyte Membrane Fuel Cells(PEMFCs) were synthesized by reduction with HCHO and their activity as a oxygen reduction reaction(ORR) was examined at half cell. The electrochemical oxygen reduction reaction(ORR) was studied by using a glaasy carbon electrode through cyclic voltammetric curves(CV) in a 1 M $H_2SO_4$ solution. The ORR activities of $Pt_9Mn_1$/C were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Also potential-current curves of $Pt_9Mn_1$/C at 0.9, 0.8, 0.7, 0.6V for 5minutes respectively were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Physical characterization was made by using x-ray diffraction(XRD) and transmission electron microscope(TEM). The TEM images of $Pt_9Mn_1$/C, $Pt_{10}$/C catalysts showed homogenous particle distribution with particle size of about 2.7 nm, 3 nm respectively and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

ANTI-TUMOR EFFECTS OF VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITOR ON ORAL SQUAMOUS CELL CARCINOMA CELL LINES (혈관내피세포성장인자 억제제에 의한 구강편평상피세포암종 세포주의 성장 억제 효과)

  • Han, Se-Jin;Lee, Jae-Hoon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.2
    • /
    • pp.66-73
    • /
    • 2009
  • Tumor angiogenesis is a process leading to formation of blood vessels within tumors and is crucial for maintaining a supply of oxygen and nutrients to support tumor growth and metastasis. Vascular endothelial growth factor(VEGF) plays a key role in tumor angiogenesis including induction of endothelial cell proliferation, migration, survival and capillary tube formation. VEGF binds to two distinct receptors on endothelial cells. VEGFR-2 is considered to be the dominant signaling receptor for endothelial cell permeability, proliferation, and differentiation. Bevacizumab(Avastin, Genetech, USA) is a monoclonal antibody against vascular endothelial growth factor. It is used in the treatment of cancer, where it inhibits tumor growth by blocking the formation of new blood vessels. The goal of this study is to identify the anti-tumor effect of Bevacizumab(Avastin) for oral squamous cell carcinoma cell lines. Human squamous cell carcinoma cell line(HN4) was used in this study. We examined the sensitivity of HN4 cell line to Bevacizumab(Avastin) by using in vitro proliferation assays. The results were as follows. 1. In the result of MTT assay according to concentration of Bevacizumab(Avastin), antiproliferative effect for oral squamous cell carcinoma cell lines was observed. 2. The growth curve of cell line showed the gradual growth inhibition of oral squamous cell carcinoma cell lines after exposure of Bevacizumab(Avastin). 3. In the apoptotic index, groups inoculated Bevacizumab(Avastin) were higher than control groups. 4. In condition of serum starvation, VEGFR-2 did not show any detectable autophosphorylation, whereas the addition of VEGF activated the receptor. Suppression of phosphorylated VEGFR-2 and phosphorylated MAPK was observed following treatment with Bevacizumab(Avastin) in a dose-dependent manner. 5. In TEM view, dispersed nuclear membrane, scattered many cytoplasmic vacuoles and localized chromosomal margination after Bevacizumab(Avastin) treatment were observed. These findings suggest that Bevacizumab(Avastin) has the potential to inhibit MAPK pathway in proliferation of oral squamous cell carcinoma cell lines via inhibition of VEGF-dependent tumor growth.

The Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell (단결정 실리콘 TFT Cell의 적용에 따른 SRAM 셀의 전기적 특성)

  • Lee, Deok-Jin;Kang, Ey-Goo
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.757-766
    • /
    • 2005
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6T Full CMOS SRAM had been continued as the technology advances, However, conventional 6T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6T Full CMOS SRAM is $70{\sim}90F^{2}$, which is too large compared to $8{\sim}9F^{2}$ of DRAM cell. With 80nm design rule using 193nm ArF lithography, the maximum density is 72M bits at the most. Therefore, pseudo SRAM or 1T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed $S^{3}$ cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^{3}$ SRAM cell technology with 100nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

  • PDF

Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell (Stacked Single Crystal Silicon TFT Cell의 적용에 의한 SRAM 셀의 전기적인 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Jin-Ho;Yu, Jang-Woo;Kim, Chang-Hun;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.314-321
    • /
    • 2006
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6 T Full CMOS SRAM had been continued as the technology advances. However, conventional 6 T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6 T Full CMOS SRAM is $70{\sim}90\;F^2$, which is too large compared to $8{\sim}9\;F^2$ of DRAM cell. With 80 nm design rule using 193 nm ArF lithography, the maximum density is 72 Mbits at the most. Therefore, pseudo SRAM or 1 T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64 M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6 T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed S3 cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^3$ SRAM cell technology with 100 nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

VLD technique for MEAs performance enhancement (MEA의 장기 성능 향상을 위한 VLD 기술 개발)

  • Lim, Sang-Jin;Kim, Hyoung-Juhn;Cho, Eun-Ae;Lee, Sang-Yeop;Lim, Tae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.494-497
    • /
    • 2006
  • For commercialization of polymer electrolytemembrane fuel cell (PEMFC), durability of membrane electrode assemblies (MEAs) has to be improved. Especially, long-term stability of MEA is one of the most important issues for frequent shut-down and start-up processes of PEMFC. The degradation of MEA could be attributed to chemical attack of hydrogen peroxide radicals that are formed at high cell voltages without any special treatment to remove residual hydrogen from anode gas channel after shut-down of the fuel cell. In this study, we investigated the long-term stability of MEA under different on/off operation conditions. Residential hydrogen gas was removed from the anode flow channel by purging air or nitrogen. Also, a dummy resistance was applied to the fuel cell to exhaust residential hydrogen at the anode. In these cases, MEA showed much more stable durability. Electrochemical characteristics of the fuel cell were measured byrepeating the on/off cycles with the hydrogen removal processes. Also, degradation of MEA components was examined by SEM, TEM and XRD analyses.

  • PDF

Leakage of Cellular Materials from Saccharomyces cerevisiae by Ohmic Heating

  • Yoon, Sung-Won;Lee, Chung-Young-J.;Kim, Ki-Myung;Lee, Cherl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.183-188
    • /
    • 2002
  • The ohmic heating of foods for sterilization provides a shorter come-up time compared to conventional thermal processes. The electric fields as well as the heat generated by ohmic heating facilitate germicidal effects. In the present study, the effect of ohmic heating on the structure and permeability of the cell membrane of yeast cells, Saccharomyces cerevisae, isolated from Takju (a traditional Korean rice-beer), was investigated. The ohmic heating was found to translocate intracellular protein materials out of the cell wall, and the amount of exuded protein increased significantly as the electric field increased from 10 to 20 V/cm. As higher frequencies were applied, more materials were exuded. Compared to conventional heating, more amounts of proteins and nucleic acids were exuded when these cells were treated with ohmic heating. The molecular weights of the major exuded proteins ranged from 14 kDa to 18 kDa, as analyzed by Tricine-SDS PAGE. A TEM study also confirmed the leakage of cellular materials, thus indicating irreversible damage to the cell wall by ohmic heating. It was, therefore, concluded that the electric fields generated by ohmic heating induced electroporation, causing irreversible damage to the yeast cell wall and promoting the translocation of intracellular materials.