Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.10.2969

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process  

Kang, Hyun Suk (Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI))
Jung, Yung-Min (Fuel Cell Research Center, Korea Institute of Energy Research (KIER))
Song, Rak-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research (KIER))
Peck, Dong-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research (KIER))
Park, ChangMoon (Department of Chemistry, Chungnam National University)
Lee, Byung Cheol (Radiation Integrated System Research Division, Korea Atomic Energy Research Institute (KAERI))
Publication Information
Abstract
A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.
Keywords
Electron beam irradiation; LSCF-Ag cathode; Solid oxide fuel cell;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wang, L. S.; Barnett, S. A. J. Solid State Ionics 1995, 76, 103-113.   DOI
2 Simmer, S. P.; Bonnett, J. F.; Canfield, N. L.; Meinhardt, K. D.; Shelton, J. P.; Sprenkle, V. L.; Stevenson, J. W. J. Power Sources 2003, 113, 1-10.   DOI
3 Sasaki, K.; Tamura, J.; Dokiya, M. Solid State Ionics 2001, 144, 233-240.   DOI
4 Sasaki, K.; Tamura, J.; Hosoda, H.; Lan, T. N.; Yasumoto, K.; Dokiya, M. J. Solid State Ionics 2002, 148, 551-555.   DOI
5 Uchida, H.; Yoshida, M.; Watanabe, M. J. Electrochem. Soc. 1999, 146, 1-7.   DOI
6 Wang, S.; Katsuki, M.; Dokiya, M.; Hashimoto, T. Solid State Ionics 2003, 159, 71.   DOI
7 Uchida, H.; Arisaka, S.; Watanabe, M. J. Solid State Ionics 2000, 135, 347-351.   DOI   ScienceOn
8 Lee, H. Y.; Cho, W. S.; Oh, S. M. Bull. Korean Chem. Soc. 1998, 19, 661-666.
9 Lim, Y. T.; Son, J. Y. Bull. Korean Chem. Soc. 2013, 34, 2822-2824.   DOI
10 Katsuki, M.; Wang, S.; Dokiya, M.; Hashimoto,T. J. Solid State Ionics 2003, 156, 453-461.   DOI
11 Wang, S.; Kato, T.; Nagata, S.; Honda, T.; Kaneko, T.; Iwashita, N.; Dokiya, M. J. Solid State Ionics 2002, 146, 203.   DOI
12 Sakito, Y.; Hirano, A.; Imanishi, N.; Takeda, Y.; Yamamoto, O.; Liu, Y. J. Power Sources 2008, 182, 476.   DOI
13 Haanappel, V. A. C.; Rutenbeck, D.; Mai, A.; Uhlenbruck, S.; Sebold, D.; Wesemeyer, H. J. Power Sources 2004, 130, 119.   DOI
14 Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Biotechnol. Prog. 2006, 22, 577-583.   DOI   ScienceOn
15 Henglein, A. J. Phys. Chem. 1993, 97, 547-5471.
16 Woods, R. J.; Pikaev, A. K. Applied Radiation Chemistry; John Wiley & Sons, Inc: New York, USA, 1993; p 4.
17 Wang, Z.; Xu, C.; Lou, Z.; Qiao, J.; Ren, B.; Sun, K. J. Hydrogen Energy 2013, 38, 1074.   DOI
18 Sholklapper, T. Z.; Radmilovic, V.; Jacobson, C. P.; Visco, S. J.; De Jonghe, L. C. J. Power Sources 2008, 175, 206.   DOI