• 제목/요약/키워드: TEM Journal

Search Result 3,012, Processing Time 0.027 seconds

Investigation of Thermal Conductivity and Convective Heat Transfer of Alumina Nanofluids under Laminar Flow

  • Seung-Il, Choi;Hafizur-Rehman, Hafizur-Rehman;Eom, Yoon-Sub;Ji, Myoung-Kuk;Kim, Jun-Hyo;Chung, Han-Shik;Jeong, Hyo-Min
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.78-86
    • /
    • 2013
  • In this research, dilute colloidal suspension alumina nanofluids were prepared by dispersing alumina nanoparticles in DI water and ethylene glycol as base fluids. Particle size analyzer and TEM test results revealed that the size of the alumina nanofluids(3wt% and 5wt%) with dispersion time 3hrs were 46nm and 60nm respectively. Thermal conductivity of these alumina nanofluids was measured by means of hot wire technique using a LAMBDA system. For water based alumina nanofluids, thermal conductivity enhancement was from 2.29% to 3.06% with 5wt% alumina at temperatures ranging from 15 to $40^{\circ}C$. Whereas in case of ethylene glycol based alumina nanofluids under the same temperature range, thermal conductivity enhancement was from 9.6% to 10% with 5wt% alumina. An enhancement of 37% average convective heat transfer was achieved with 5wt% alumina nanofluids at Re of 1,100.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

The semiconductor carbon nanotube growth with atmosphere pressure chemical vapor deposition method and oxidation effect at $300^{\circ}C$ in air (상압화학기상 증착법에 의한 반도체탄소나노튜브의 성장과 $300^{\circ}C$ 대기에서의 산화열처리 효과)

  • Kim, Jwa-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.57-60
    • /
    • 2005
  • Semiconductor carbon nanotube was grown on oxided silicon wafer with atmosphere pressure chemical vapor deposition (APCVD) method and investigated the electrical property after thermal oxidation at $300^{\circ}C$ in air. The electrical property was measured at room temperature in air after thermal oxidation at $300^{\circ}C$ for various times in air. Semiconductor carbon nanotube was steadily changed to metallic carbon nanotube as increasing of thermal oxidation times at $300^{\circ}C$ in air. Some removed area of carbon nanotube surface was shown with transmission electron microscopy (TEM) after thermal oxidation for 6 hours at $300^{\circ}C$ in air.

Size control of Au nanoparticles by pH and effect of surface enhanced raman spectroscopy (SERS) (pH에 의한 골드나노입자의 사이즈 조절과 표면라만증강의 효과)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.379-382
    • /
    • 2019
  • Synthesis of gold nanoparticles (NPs) made an aqueous environment via the reduction of HAuCl4 by ascorbic acid (AC) with the surfactant of polyvinylpyrrolidone (PVP). Highly monodisperse gold particles with size ranges from 4 to 20 nm were prepared in high-yield by pH control. The synthesized gold nanoparticles were analyzed for structural and optical properties using transmission electron microscopy (TEM) and UV-vis spectroscopy. In this study, we could reveal that the prepared nanoparticles exhibited efficient surface-enhanced Raman scattering (SERS) properties, and their SERS activities depends on size.

Microstructure and Processing of Bioactive Ceramic Composites as Dental Implants (치과 임플란트용 bioactive 세라믹 복합재료의 제조와 미세조직)

  • Kim, Bu-Sob
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2003
  • The purpose of this study was to process bio-active glass ceramic composite, reinforced with sapphire fibers, by hot press. Also to study the interface of the matrix and the sapphire fiber, and the mechanical properties. Glass raw materials melted in Pt crucible at 1300$^{\circ}C$ during 3.5 hours. The melt was crushed in ball mill and then crushed material, ground and sieved to $<40{\beta}{\mu}m$. Sapphire fibers cut (30mm) and aligned. Powder and fibers hot pressed. The micrographs show good bonding between the matrix and the fiber and no porosity in the glass matrix. This means ideal fracture phenomena. Glass is fractured before the fiber. This is indication of good fracture strength. EDXS showing aluminum rich phase and crystalline phase. Bright field image of the matrix showing crystalline phase. Also diffraction pattern of TEM showing the crystalline phase and more than one phase. Strength of the samples was determined by 3 point bend testing. Strength of the 10vol% sample was approximately 69MPa, while strength of the control sample is 35MPa. Conclusions through this study as follow: 1. Micrographs show no porosity in the glass matrix and the interface. 2. The interface between the fiber and the glass matrix show no gaps. 3. Fracture of the glass indicates characteristic fiber-matrix separation. 4. Presence of crystalline phase at high processing temperature. 5. Sapphire is compatible with bioactive glass.

  • PDF

Crystallization of Coprecipitates Prepared from Lead Nitrate and Titanium Tetrachloride (질산납과 사염화티탄으로부터 제조된 공침물의 결정화)

  • Choe, Byeong-Cheol;Lee, Mun-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.541-549
    • /
    • 1994
  • The crystallization behavior and structural change of amorphous $PbTiO_{3}$ precursors prepared by coprecipitation method were investigated by XRD, Raman spectra, TEM, and RDF. The precursors were prepared at $45^{\circ}C$ and pH of 9 from a mixed solution of lead nitrate and titanium tetrachloride derived using $H_2O_2$ or $NH_4NO_3$ as an ion stabilizer. The activation energy and temperature for crystallization of the coprecipitate prepared using $NH_4NO_3$ as an ion stabilizer were lower than that derived from the solution containing $H_2O_2$ stabilizer. The amorphous coprecipitate transformed to transient phase and then to crystalline $PbTiO_{3}$. Average interatomic distances of amorphous states decreased with increasing heat-treatment temperature.

  • PDF

Microstructural Analysis of Epitaxial Layer Defects in Si Wafer

  • Lim, Sung-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.645-648
    • /
    • 2010
  • The structure and morphology of epitaxial layer defects in epitaxial Si wafers produced by the Czochralski method were studied using focused ion beam (FIB) milling, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Epitaxial growth was carried out in a horizontal reactor at atmospheric pressure. The p-type Si wafers were loaded into the reactor at about $800^{\circ}C$ and heated to about $1150^{\circ}C$ in $H_2$. An epitaxial layer with a thickness of $4{\mu}m$ was grown at a temperature of 1080-$1100^{\circ}C$. Octahedral void defects, the inner walls of which were covered with a 2-4 nm-thick oxide, were surrounded mainly by $\{111\}$ planes. The formation of octahedral void defects was closely related to the agglomeration of vacancies during the growth process. Cross-sectional TEM observation suggests that the carbon impurities might possibly be related to the formation of oxide defects, considering that some kinds of carbon impurities remain on the Si surface during oxidation. In addition, carbon and oxygen impurities might play a crucial role in the formation of void defects during growth of the epitaxial layer.

Change in Microstructure and Mechanical Properties of Deoxidized Low-Phosphorous Copper Processed by Accumulative Roll-Bonding with Annealing (ARB가공된 인탈산동의 어닐링에 따른 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Kim, Chun-Su;Kim, Sang-Shik;Han, Seung-Zeon;Lim, Cha-Yong
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.361-365
    • /
    • 2007
  • A deoxidized low-phosphorous copper processed by eight cycles of accumulative roll-bonding (ARB) was annealed at various temperatures ranging from 100 to $400^{\circ}C$. The annealed copper was characterized by transmission electron microscopy (TEM) and tensile & hardness test. TEM observation revealed that the ultrafine grains developed by the ARB still remained up to $350^{\circ}C$, however above $400^{\circ}C$ they were replaced by equiaxed and coarse grains due to an occurrence of the static recrystallization. The hardness of the copper decreased slightly with the annealing temperature up to $350^{\circ}C$, however they dropped largely above $400^{\circ}C$. Annealing characteristics of the copper were compared with those of an oxygen free copper processed by ARB and subsequently annealed.

Synthesis of Nanosized Cu/Zn Particles in the Base Oil Phase by Hydrothermal Method and Their Abrasion Resistance (기유 내에서 수열합성법에 의한 나노크기의 구리/아연 입자 합성 및 윤활 특성)

  • Kim, Young-Seok;Lee, Ju-Dong;Lee, Man-Sig
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • Stable metallic Cu/Zn nanoparticles were prepared in the base oil phase by hydrothermal method. The physical properties, such as crystal structure, crystallite size and crystallinity according to synthesis conditions have been investigated by XRD, FT-IR and TEM. In addition, 4-ball test has been performed in order to investigate the frictional wear properties of prepared nanosized Cu/Zn particles. The peaks of the X-ray diffraction pattern indicate that the particle size was very small and crystallinity of Cu/Zn particles was good. The micrographs of TEM showed that nanosized Cu/Zn particles possessed a spherical morphology with a narrow size distribution. The crystallite size of the Cu/Zn particles synthesized in base oils was 23-30 nm. It was found that the antiwear capacity increases with increasing Cu/Zn concentration. When the concentration of Cu/Zn was 5.0 wt%, the wear scar diameters was 0.38 mm.

Disinfection by Ozone Microbubbles Can Cause Morphological Change of Fusarium oxysporum f. sp. melonis Spores

  • Tamaki, Masahiko;Kobayashi, Fumiyuki;Ikeura, Hiromi;Sato, Michio
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.335-340
    • /
    • 2018
  • To investigate the difference in the disinfectant efficiency of ozone microbubbles ($O_3MB$) and ozone millibubbles ($O_3MMB$), the morphological change of the treated Fusarium oxysporum f. sp. melonis spores was observed with scanning and transmission electron microscopies (SEM and TEM). The disinfectant efficiency of $O_3MB$ on F. oxysporum f. sp. melonis spores was greater than that of $O_3MMB$. On observation with SEM, it was revealed that morphological change of F. oxysporum f. sp. melonis spores was caused by $O_3MB$ and $O_3MMB$, and damage to the spore surfaces by $O_3MB$ occurred sooner than that by $O_3MMB$. On observation with TEM, it was furthermore confirmed that F. oxysporum f. sp. melonis spores treated with $O_3MB$ induced wavy deformation of cell membrane and the intracellular change different from that with $O_3MMB$. Therefore, the greater disinfection efficiency of $O_3MB$ was suggested to be caused due to the function of the MB in addition to the oxidative power of $O_3$.