Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.12.645

Microstructural Analysis of Epitaxial Layer Defects in Si Wafer  

Lim, Sung-Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
Publication Information
Korean Journal of Materials Research / v.20, no.12, 2010 , pp. 645-648 More about this Journal
Abstract
The structure and morphology of epitaxial layer defects in epitaxial Si wafers produced by the Czochralski method were studied using focused ion beam (FIB) milling, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Epitaxial growth was carried out in a horizontal reactor at atmospheric pressure. The p-type Si wafers were loaded into the reactor at about $800^{\circ}C$ and heated to about $1150^{\circ}C$ in $H_2$. An epitaxial layer with a thickness of $4{\mu}m$ was grown at a temperature of 1080-$1100^{\circ}C$. Octahedral void defects, the inner walls of which were covered with a 2-4 nm-thick oxide, were surrounded mainly by $\{111\}$ planes. The formation of octahedral void defects was closely related to the agglomeration of vacancies during the growth process. Cross-sectional TEM observation suggests that the carbon impurities might possibly be related to the formation of oxide defects, considering that some kinds of carbon impurities remain on the Si surface during oxidation. In addition, carbon and oxygen impurities might play a crucial role in the formation of void defects during growth of the epitaxial layer.
Keywords
epitaxial-layer defects; microstructure; transmission electron microscopy; Czochralski method; Si wafer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 J. C. Reiner, P. Gasser and U. Sennhauser, Microelectron. Reliab., 42, 1753 (2002).   DOI   ScienceOn
2 S. H. Lim and D. Shindo, Phys. Rev. Lett., 86, 3795 (2001).   DOI   ScienceOn
3 S. H. Lim, D. Shindo, I. Yonenaga, P. D. Brown and C. J. Humphreys, Phys. Rev. Lett., 81, 5350 (1998).   DOI   ScienceOn
4 H. O. Kim, W. J. Kim, K. H. Lee and S. I. Hong, Kor. J. Mater. Res., 17(8), 408 (2007). (in Korean)   DOI   ScienceOn
5 H. Yamagishi, I. Fusegawa, N. Fujimaki and M. Katayama, Semicond. Sci. Tech., 7, A135 (1992).   DOI   ScienceOn
6 S. Mahajan, Progr. Mater. Sci., 33, 1 (1989).   DOI   ScienceOn
7 M. Kato, T. Yoshida, Y. Ikeda and Y. Kitagawara, Jpn. J. Appl. Phys., 35, 5597 (1996).   DOI
8 M. Itsumi and F. Kiyosumi, Appl. Phys. Lett., 40, 496 (1982).   DOI
9 M. Itsumi, M. Tomita and M. Yamawaki, J. Appl. Phys., 78, 1940 (1995).   DOI   ScienceOn
10 J. Ryuta, E. Morita, T. Tanaka and Y. Shimanuki, Jpn. J. Appl. Phys., 29, L1947 (1990).   DOI
11 K. Nakai, M. Hasebe, K. Ohta and W. Ohashi, J. Cryst. Growth, 210, 20 (2000).   DOI   ScienceOn
12 S. Mendelson, J. Appl. Phys., 35, 1570 (1964).   DOI
13 J. A. Rossi, W. Dyson, L. G. Hellwing and T. M. Hanley, J. Appl. Phys., 58, 1798 (1985).   DOI
14 N. Munter, B. O. Kolbesen, W. Storm and T. Muller, J. Electrochem. Soc., 150, G192 (2003).   DOI   ScienceOn
15 M. Iwabuchi, K. Mizushima, M. Mizuno and Y. Kitagawara, J. Electrochem. Soc., 147, 1199 (2000).   DOI   ScienceOn
16 F. Altmann and D. Katzer, Thin Solid Films, 343-344, 609 (1999).   DOI   ScienceOn
17 K. Minowa, K. Takeda, S. Tomimatsu and K. Umemura, J. Cryst. Growth, 210, 15 (2000).   DOI   ScienceOn