• Title/Summary/Keyword: TEM Journal

Search Result 3,012, Processing Time 0.028 seconds

Microstructural Characteristics of 800 MPa Grade High Strength Steel Weld Metals (800 MPa급 고강도강 용접금속의 미세조직 특성 비교 연구)

  • Lee, Jae-Hee;Kim, Sang-Hoon;Yoon, Byung-Hyun;Kim, Hwan-Tae;Kil, Sang-Cheol;Lee, Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • Microstructural characteristics of two high strength (600 MPa & 800 MPa) weld metals produced by flux-cored arc welding process (FCAW) were evaluated. The 600 MPa grade weld metal was consisted of 75% acicular ferrite and 25% ferrite which was formed at relatively high temperature (grain boundary ferrite, widmanstatten ferrite, polygonal ferrite). However, the 800 MPa grade weld metal was composed of about 85% acicular ferrite and 15% low temperature forming phases (bainite, martensite). The prior austenite grain size of 800 MPa grade weld metal was decreased by solute drag force. The compositions and sizes of inclusions which are the dominant factors for the formation of acicular ferrite were analyzed by a transmission electron microscopy (TEM). In both 600 MPa and 800MPa grade weld metals, the inclusions were mainly consisted of Ti-oxide and Mn-oxide, and the average size of inclusions was $0.7{\mu}m$. The 800 MPa grade weld metal exhibited higher tensile strength and similar toughness compared with the 600 MPa grade weld metal. This result is mainly due to a higher fraction of low temperature products and a lower fraction of grain boundary ferrite in the 800 MPa grade weld metal.

Removal Characteristics of Phosphorus at Synthetic Variation of Zirconium Mesoporous Structure (지르코늄 메조기공 구조체의 합성조건 변화에 따른 인 제거 특성)

  • Lee, Sang-hyup;Lee, Byoung-cheun;Lee, Kwan-yong;Choi, Yong-su;Park, Ki-young
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.637-642
    • /
    • 2005
  • The focus of this study was to examine the phosphorus removal characteristic by zirconium mesoporous structured material synthesized on various conditions. The zirconium sulfate-surfactant mesoporous structured material(ZS) was synthesized by hydro-thermal synthesis. The material has regular hexagonal array of surfactant micelles and sulfate ion ($HSO_4{^-}$). We confirmed that sulfate ion in zirconium mesoporous structured material can be ion-exchanged with phosphate ion ($H_2PO_4{^-}$) in phosphoric acid solution. On the X-ray diffraction (XRD) pattern of ZS, three peaks which shows the important characteristics of hexagonal crystal lattice were observed at (100), (110) and (200). The transmission electron micrograph (TEM) show high crystallization with pore size about $47{\AA}$. The maximum adsorption capacity of ZS was as great as 3.2 mmol-P/g-ZS. From the adsorption isotherm, correlation coefficients were higher for the Langmuir isotherm than the Freundlich isotherm. With the respect of chain length of surfactant, the adsorption capacity for phosphate synthesized with C12 was higher than C16 and C18. The highest amount of adsorbed phosphate on ZS was observed at the surfactant-to-zirconium molar ratio of 0.5 to 1.

Effect of growth interruption on InN/GaN single quantum well structures

  • Kwon, S.Y.;Kim, H.J.;Na, H.;Seo, H.C.;Kim, H.J.;Shin, Y.;Kim, Y.W.;Yoon, S.;Oh, H.J.;Sone, C.;Park, Y.;Sun, Y.P.;Cho, Y.H;Cheong, H.M.;Yoon, E.
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.95-99
    • /
    • 2003
  • We successfully grew InN/GaN single quantum well structures by metal-organic chemical vapor deposition and confirmed their formation by optical and structural measurements. We speculate that relatively high growth temperature ($730^{\circ}C$) of InN layer enhanced the formation of 2-dimensional quantum well structures, presumably due to high adatom mobility. As the growth interruption time increased, the PL emission efficiency from InN layer improved with peak position blue-shifted and the dislocation density decreased by one order of magnitude. The high resolution cross-sectional TEM images clearly showed that the InN layer thickness reduced from 2.5 nm (without GI) to about I urn (with 10 sec GI) and the InN/GaN interface became very flat with 10 sec GI. We suggest that decomposition and mass transport processes on InN during GI is responsible for these phenomena.

Spferical fine ZnO Particles prepared from zinc nitrate by Ultrasonic Spray Pyrolysis technique (초음파 분무 열분해법에 의해 질산아연용액으로부터 구형의 ZnO 미분말 제조)

  • 이서영;김영도;신건철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.1 no.2
    • /
    • pp.46-58
    • /
    • 1991
  • The synthesized ZnO powder was prepared by spray pyrolysis method using ultrasonic vibrator. The starting solutons were the aqueous solution of $Zn(NO_3)_2\cdot6H_2O$. The concentration was prepared 1M, O.5M, O.25M, and O.lM. The Nz carrier gas was 2.3cm$\cdot{sec}^{-1}$. The prepared powder from the $Zn(NO_3)_2{\cdot}6H_2O$ aqueous solution was Zine oxide with hexagonal structure. The shape of prepared powder was fine size, narrow size distribution, agglomerate-free, nearly sphere particle. Also, the particle size was about $ 0.28-0.61\mum$.

  • PDF

Synthesis of $CaCrO_4$Powders for the Cathode Material of Thermal Battery by GNP and Electrochemical Properties of Ca/LiCl-KCl/$CaCrO_4$Thermal Battery System (GNP 방법에 의한 Thermal Battery용 양극 재료 $CaCrO_4$분말 합성 및 Ca/LiCl-KCl/$CaCrO_4$전지계의 전기 화학적인 특성 평가)

  • 이현주;김영석;김선재;이창규;김홍회;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • Ca/LiCl-KCl/CaCrO$_4$열 전지계의 양극재료로서 BCT(Body-Centered Tetragonal) 결정구조를 갖는 CaCrO$_4$분말을 GNP로 합성하고, SEM, TEM, XRD를 이용하여 그 미세구조를 분석하였다. GNP 공정에 의한 CaCrO$_4$분말은 단일상으로 0.5$mu extrm{m}$ 이하의 입자 크기를 가지며 균일하게 분포한 반면, 기존의 분말 혼합법은 높은 하수 온도 및 장시간의 하소 조건을 필요하므로 미세한 분말 합성이 어렵고 pellet 형태로 만들었을 때 GNP 분말에 비해 비표면적이 현저하게 작기 때문에 전극 재료로써 유리하지 못하다. Ca/LiCl-KCl/CaCrO$_4$계의 전기 화학적인 특성을 평가해본 결과 전지셀을 Ca/DEB(LiCl-KCl+CaCrO$_4$+SiO$_2$)와 같은 DEB 형태로 만들었을 때 $600^{\circ}C$의 온도에서 2.0 V이상 (<100 mA/㎤)의 안정한 전압이 5분 이상 유지되었다. 그러나 3층 전극 셀(Ca/LiCl/KCl/ CaCrO$_4$)에서는 동일한 온도에서 2.0 V이상 (<100 mA/㎤)의 전압이 7분 이상 유지되었으나 불안정한 전압 변동 및 낮은 peak voltage로 인해 DEB 셀의 전지 특성이 더 우수한 것으로 생각된다. 양극 재료의 제조 방법의 관점에서 볼 때, 동일한 DEB(Depolarizer : Electrolyte : Binder=25 : 70 : 5 wt%) 조성의 셀 구성시, GNP 분말은 분말 혼합법에 의한 분말보다 반응 표면적이 훨씬 크기 때문에 GNP 양극 활 물질의 DEB 셀에서의 전지 수명이 더 길었다.

  • PDF

Properties of Nano-sized Au Particle Doped ZrO2 Thin Film Prepared by the Sol-gel Method (졸-겔법에 의한 나노 사이즈 Au 미립자 분산 ZrO2 박막의 특성)

  • 이승민;문종수
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1197-1201
    • /
    • 2003
  • Thin film on SiO$_2$ glass was synthesized by a dip-coating method from the ZrO$_2$ sol which had dispersed nanosize Au particle under ambient atmosphere. After heat treatment of the prepared thin film, the characteristics were investigated by X-ray diffraction, UV-VIS spectrometer, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). It was found that ZrO$_2$ thin film with 100 nm thickness was crystallized to tetragonal phase at 50$0^{\circ}C$. The size of dispersed Au particle was 15∼40nm and the film had a smooth surface with a roughness of 0.84 nm. The film showed nonlinearity characteristics with absorption peaks at 630∼670nm visible region because of the plasma resonance of Au metallic particles.

Integration of Ba0.5Sr0.5TiO3Epitaxial Thin Films on Si Substrates and their Dielectric Properties (Si기판 위에 Ba0.5Sr0.5TiO3 산화물 에피 박막의 집적화 및 박막의 유전 특성에 관한 연구)

  • Kim, Eun-Mi;Moon, Jong-Ha;Lee, Won-Jae;Kim, Jin-Hyeok
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.362-368
    • /
    • 2006
  • Epitaxial $Ba_{0.5}Sr_{0.5}TiO_3$ (BSTO) thin films have been grown on TiN buffered Si (001) substrates by Pulsed Laser Deposition (PLD) method and the effects of substrate temperature and oxygen partial pressure during the deposition on their dielectric properties and crystallinity were investigated. The crystal orientation, epitaxy nature, and microstructure of oxide thin films were investigated using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Thin films were prepared with laser fluence of $4.2\;J/cm^2\;and\;3\;J/cm^2$, repetition rate of 8 Hz and 10 Hz, substrate temperatures of $700^{\circ}C$ and ranging from $350^{\circ}C\;to\;700^{\circ}C$ for TiN and oxide respectively. BSTO thin-films were grown on TiN-buffered Si substrates at various oxygen partial pressure ranging from $1{\times}10^{-4}$ torr to $1{\times}10^{-5}$ torr. The TiN buffer layer and BSTO thin films were grown with cube-on-cube epitaxial orientation relationship of $[110](001)_{BSTO}{\parallel}[110](001)_{TiN}{\parallel}[110](001)_{Si}$. The crystallinity of BSTO thin films was improved with increasing substrate temperature. C-axis lattice parameters of BSTO thin films, calculated from XRD ${\theta}-2{\theta}$ scans, decreased from 0.408 m to 0.404 nm and the dielectric constants of BSTO epitaxial thin films increased from 440 to 938 with increasing processing oxygen partial pressure.

Enhanced Photocatalytic Efficiency of Nanoscale NiS2/TiO2 Catalysts Synthesized by Hydrothermal and Sol-gel Method

  • Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • To improve the visible-light induced photocatalytic application performances of $TiO_2$, in this study, the $NiS_2$ modied $TiO_2$ composites were prepared by two methods: hydrothermal method and sol-gel method. The composites were denoted as hs-$NiS_2$/$TiO_2$, and sg-$NiS_2$/$TiO_2$ and characterized by XRD, UV-vis absorbance spectra, SEM, TEM, EDX, and BET analysis. The photocatalytic activities under visible light were investigated by the degradation of methyl orange (MO). The photodegradation rate of methyl orange under visible light with $NiS_2$/$TiO_2$ composites was markedly higher than that of pure $TiO_2$, and the effect of hs-$NiS_2$/$TiO_2$ composites was better than that of sg-$NiS_2$/$TiO_2$. The results indicate that the hydrothermal process could partly inhibit the agglomeration of $NiS_2$/$TiO_2$. Thus, the dispersion of nanoparticles was improved, and that the promoting effect of $NiS_2$ could extend the light absorption spectrum toward the visible region.

Sonophotocatalytic Performance of Bi2Se3-Graphene/TiO2 Hybrid Nanomaterials Synthesized with a Microwave-assisted Method

  • Zhu, Lei;Jo, Sun-Bok;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.162-169
    • /
    • 2014
  • This paper introduces a microwave-assisted synthesis method to prepare hybrid $Bi_2Se_3-GR/TiO_2$ nanocomposites, which exhibit superior properties over single component materials. The as-prepared composites were characterized by XRD, UV-vis absorbance spectra, SEM,TEM, EDX, and BET analyses, revealing uniform covering of the graphene nanosheet with $Bi_2Se_3$ and $TiO_2$ nanocrystals. For visible light photocatalysis of Rh.B, a significant enhancement in the reaction rate was consequently observed with $Bi_2Se_3-GR/TiO_2$ composites. The degradation rate($k_{app}$) obtained for sonophotocatalysis was $6.8{\times}10^{-3}min^{-1}$, roughly 2.2 times better than that of VL photocatalysis under higher concentrations of Rh.B. The sonophotocatalysis was faster due to greater formation of reactive radicals as well as an increase of the active surface area of the $Bi_2Se_3-GR/TiO_2$ composites. The high activity is attributed to the synergetic effects of high charge mobility and red shift of the absorption edge of $Bi_2Se_3-GR/TiO_2$.

Synthesis of (Ni,Mg)Al2O4 Ceramic Nano Pigment by a Polymerized Complex Method (착체중합법을 이용한 (Ni,Mg)Al2O4 Cyan 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.195-200
    • /
    • 2013
  • Here, we report preparation of cyan ceramic nano-pigment for inkjet printing and the Ni substitutional effects on the cyan color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of nickel-based cyan ceramic nano-pigments. Various compositions of $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using the polymerized complex method. The powder was then preheated at $400^{\circ}C$ for 5 h and finally calcined at $1000^{\circ}C$ for 5 h. XRD patterns of $Ni_xMg_{1-x}Al_2O_4$ showed a single phase of the spinel structure in all the compositions. The particle sizes ranged from 20 to 50 nm in TEM observations. The characteristics of the color tones of $Ni_xMg_{1-x}Al_2O_4$ were analyzed by UV-Visible spectroscopy and CIE $L^*a^*b^*$ measurement. CIE $L^*a^*b^*$ measurement results indicate that the pigment color changes from light cyan to deep cyan due to the decrease of the $a^*$ and $b^*$ values with an increase of an Ni substitutional amount. In addition, the thermal stability and the binding nature of $Ni_xMg_{1-x}Al_2O_4$ are also discussed using TG-DSC and FT-IR results respectively.