• 제목/요약/키워드: TE10

검색결과 1,572건 처리시간 0.024초

(InTe)x(GeTe) 박막의 비정질-결정질 상변화 (Amorphous-to-Crystalline Phase Transition of (InTe)x(GeTe) Thin Films)

  • 송기호;백승철;이현용
    • 한국전기전자재료학회논문지
    • /
    • 제23권3호
    • /
    • pp.199-205
    • /
    • 2010
  • The crystallization speed (v) of amorphous (InTe)$_x$(GeTe) (x = 0.1, 0.3 and 0.5) films and their thermal, optical and electrical behaviors have been investigated using nano-pulse scanner (wavelength = 658 nm, laser beam diameter < 2 ${\mu}m$), X-ray diffraction (XRD), 4-point probe and UV-vis-IR spectrophotometer. These results were compared with those of $Ge_2Sb_2Te_5$ (GST) film, comprehensively utilized for phase-change random access memory (PRAM). Both v-value and thermal stability of (InTe)$_{0.1}$(GeTe) and (InTe)$_{0.3}$(GeTe) films could be enhanced in comparison with those of the GST. Contrarily, the v-value in the (InTe)$_{0.5}$(GeTe) film was so drastically deteriorated that we could not quantitatively evaluate it. This deterioration is thought because amorphous (InTe)$_{0.5}$(GeTe) film has relatively high reflectance, resulting in too low absorption to cause the crystallization. Conclusively, it could be thought that a proper compositional (InTe)$_x$(GeTe) films (e.g., x < 0.3) may be good candidates with both high crystallization speed and thermal stability for PRAM application.

Co-sputtering법으로 제작한 ZnTe 태양전지의 특성 (Characteristics of the ZnTe solar cell by the co-sputtering methods)

  • 장유진;김성우;최혁환;이명교;권태하
    • 한국정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.440-448
    • /
    • 2004
  • 본 논문에서는 II-Vl족의 ZnTe 화합물반도체 태양전지를 제작하기 위하여 투명전극(AZO) 및 Buffer layer(ZnO)의 특성과 태양전지의 효율에 가장 큰 영향을 미치는 광흡수층의 에너지밴드갭을 줄이는 연구를 하였다. ZnTe박막은 Zn(Zinc)과 Te(Tellurium)를 co-sputtering법을 이용하여 증착하였다. ZnTe 박막은 Zn과 Te의 RF power를 각각 50W, 30W로 하여 10mTorr의 Ae 분위기에서 20$0^{\circ}C$의 기판온도로 제작되었으며, 이때의 에너지밴드갭은 1.73eV였다. 이렇게 제작된 박막을 진공상태에서 $400^{\circ}C$의 온도로 10초간 열처리하여 1.67eV의 에너지밴드갭을 얻을 수 있었고, 이때의 Zn과 Te의 비율은 32%:68%였다. 최적의 조건에서 태양전지는 6.85% (Voc:0.69V, Jsc:21.408㎃/$cm^2$, Fill Factor (FF):0.46)의 효율을 얻을 수 있었다.

Synthesis and Characterization of New Intermetallic Compounds $M_3(AsTe_3)_2$ (M=Cr, Fe, Co)

  • 정진승;김현학;강석구;채원식;김돈;이성한
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권10호
    • /
    • pp.1105-1108
    • /
    • 1997
  • The new amorphous intermetallic compounds, M3(AsTe3)2: M=Cr, Co, Fe, were synthesized by the precipitation reaction of the Zintl anion AsTe33- with the divalent transition metal halides in aqueous solution and analyzed by EDS equipped with SEM and PIXE. The empirical formula of the specimens was found to be Fe3.0As1.8Te5.9, Co3.0As2.1Te6.5, and Cr3.0As2.0Te6.9 by the quantitative elemental analysis. The dc specific resistivity of the materials was measured as a function of temperature in the range from 20 to 300 K, in which their resistivity of Cr3(AsTe3)2 was largely dependent on temperature, while those of Co3(AsTe3)2 and Fe3(AsTe3)2 were only slightly dependent on temperature. To characterize the spin glass state of the specimens, the ac and dc magnetic susceptibility were measured and it was found that Co3(AsTe3)2 and Fe3(AsTe3)2 undergo a transition to a spin glass state at 6 K and 38 K, respectively. Magnetization data are reported as both thermal remanent magnetization (TRM) and isothermal remanent magnetization (IRM) as a function of magnetizing field and temperature.

PbTe 열전재료에 형성된 HgTe 나노개제물의 석출거동: 초기 격자 불일치의 형성, 이론적 계산 및 실험적 증명 (Precipitation Behaviors of HgTe Nanoinclusions Formed in Thermoelectric PbTe: Initial Induced Lattice Mismatch, Theoretical Calculation and Experimental Verification)

  • 김경호;권태형;박수한;안형근;이만종
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.599-604
    • /
    • 2011
  • A highly strained nanostructure comprising crystallographically aligned HgTe nanoinclusions and a surrounding PbTe matrix has been synthesized using a precipitation process of supersaturated HgTe-PbTe alloys. From the early precipitation stage, HgTe nanoinclusions take disk shape, which is transformed from initial HgTe nuclei, although there is no lattice constant difference of the two end components at standard state. As a primary reason for the morphological transformation of the initial spherical HgTe nuclei to HgTe nanodisks, the induced lattice mismatch is suggested. On the condition that the HgTe nanodisks maintain perfect coherent nature with PbTe matrix, the stress-free lattice constant of constrained HgTe nanodisks has been calculated based on the defined concept of the strain-induced tetragonality, the linear elasticity and the actual measurement in HRTEM images.

Intermediate band solar cells with ZnTe:Cr thin films grown on p-Si substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.247.1-247.1
    • /
    • 2016
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, ZnO/ZnTe:Cr and ZnO/i-ZnTe structures were fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 10 J/cm2. The base pressure of the chamber was kept at approximately $4{\times}10-7Torr$. ZnTe:Cr and i-ZnTe thin films with thickness of 210 nm were grown on p-Si substrate, respectively, and then ZnO thin films with thickness of 150 nm were grown on ZnTe:Cr layer under oxygen partial pressure of 3 mTorr. Growth temperature of all the films was set to $250^{\circ}C$. For fabricating ZnO/i-ZnTe and ZnO/ZnTe:Cr solar cells, indium metal and Ti/Au grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. From the fabricated ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cell, dark currents were measured by using Keithley 2600. Solar cell parameters were obtained under Air Mass 1.5 Global solar simulator with an irradiation intensity of 100 mW/cm2, and then the photoelectric conversion efficiency values of ZnO/ZnTe:Cr and ZnO/i-ZnTe solar cells were measured at 1.5 % and 0.3 %, respectively.

  • PDF

Bridgeman법에 의한 CdIn2Te4 단결정 성장과 광발광 특성 (Properties of Photoluminescence and Growth of CdIn2Te4 Single Crystal by Bridgeman method)

  • 문종대
    • 센서학회지
    • /
    • 제12권6호
    • /
    • pp.273-281
    • /
    • 2003
  • 수평 전기로에서 $CdIn_2Te_4$ 다결정을 합성하여 Bridgeman 법으로 3단 수직 전기로에서 $CdIn_2Te_4$ 단결정을 성장하였다. 성장된 결정의 특성은 x선 회절과 광발광 측정으로 조사하였다. $CdIn_2Te_4$ 단결정 시료는 Laue에 배면 반사법에 의해서 (001)면으로 성장되었음을 확인하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 $8.61{\times}10^{16}/cm^3$, $242\;cm^2/V{\codt}s$였다. $CdIn_2Te_4$ 단결정의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni공식에 따라 계산한 결과 1.4750eV - $(7.69{\times}10^{-3}\;eV/K)T^2$/(T+2147 K)임을 확인하였다. 막 성장된(as-grown) $CdIn_2Te_4$ 단결정 시료를 Cd-, In-, Te 분위기에서 열처리하여 10K에서 Photoluminescence(PL) spectra를 측정하여 점 결함의 기원을 알아보았다. $CdIn_2Te_4$ 단결정내에서 내재된 결함들의 기원을 10 K에서 광발광을 측정하여 연구되었다. PL 측정으로 부터 얻어진 $V_{Te}$, $Cd_{int}$, $V_{Cd}$, 그리고 $Te_{int}$는 주개와 받개로 분류되어졌다. $CdIn_2Te_4$ 단결정 시료를 Cd 분위기에서 열처리하면 n형으로 변환됨을 악 수 있었고, In 분위기에서 열처리하면 열처리 이전의 PL spectra를 보이고 있어서 $I_2$, $I_1$ 및 S.A emission에 의한 PL peak에는 영향을 주지 않는다고 보았다.

토코페롤에서 유도된 기능성 화장품용의 새로운 계면 활성제 (Polyoxyethylene Tocopheryl Ethers; A Series of Novel Surfactants from Tocopherol for Functional Cosmetics)

  • 김영대;김창규
    • 대한화장품학회지
    • /
    • 제18권1호
    • /
    • pp.1-41
    • /
    • 1992
  • A new and unique class of nonionic surfactants was synthesized by reacting biological a-tocopherol with ethylene oxide for functional cosmetics. The structures were confirmed by Hl-UMR, FT-lR, TLC and elemental analysis. POV and conjugated diene value study for EPO showed POE(n)TE had antioxidative effect similar to tocopheryl acetate Protective effect on cell membrane in photohemolysis of POE(5)TE, POE(10)TE and POE(18)TE were slightly lower than tocopherol but higher than nonoxynol-12, and POE(10)TE had UV absorption power comparable with tocopherol and homosalate. Biological activity of the hydrophobic group of the new surfactants make them unique and different from those of conventional nonionic surfactants Systematic safety evaluations of POE(n)TEs on the skin and eye proved that they are as safe as tocopherol. The results of physicochemical study showed POE(10)TE had the lowest CMC value, POE(18)TE had the maximum surface tension reduction and the highest foam volume and POE(n)TEs had various HLB values by the degree of ethoxylation. The test resul Is of technological and practical applications of these surfactants for cosmetics showed some POE(n)TEs were superior to conventional surfactants. POE(5)TE in W/O emulsions, POE(10)TE and POE(12)TE in O/W emulsions, POE(12)TE in dispersions, POE(18)TE in solubilizations and POE(50)TE in gelations were shown to be excellent which was considered due to the structural characteristic and formation of liquid crystals of POE(n)TEs. By the development and applications of these excel lent multi-functional surfactants, innovative functional cosmetics were successfully formulated.

  • PDF

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

CdTe와 CdS-CdTe 이종접합 제작과 그 광전특성 (Preparation and Photovoltaic Properties of the CdTe and CdS-CdTe heterojunction)

  • 김성구;박계춘;이진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.49-54
    • /
    • 1992
  • Devices of ITO/CdS/CdTe/Te/Al were prepared by Electron-Beam deposition under a vacuum of $7{\times}10^{-6}$[torr]. Optical, Electrical, Structural and Photovoltaic properties of thin film CdS/CdTe at substrate. temperature 300~500[$^{\circ}C$] were also investigated, The structure of CdTe films deposited was of the zincblende type a preferential orientation of the (111) plane parallel to the substrate, the CdTe dark resistivity was about $10^6[{\Omega}cm]$. The conversion, efficiency of the cell increased with increasing substrate temperature. The best-fabricated Cell was a conversion efficiency of 9.1[%].

  • PDF

CdTe 양자점 합성과 물리적 특성 분석 (Preparation and Characterization of CdTe Quantum Dots)

  • 김현석;송현우;조경아;김상식;김성현
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.663-668
    • /
    • 2003
  • CdTe quantum dots(QDs) were synthesized in aqueous solution by colloidal method. The synthesized CdTe QDs were identified to be cubic-structured ones by x-ray diffraction(XRD). The photoluminescence(PL) was performed for CdTe QDs prepared as a function of Te precursor concentration, condensation time and aging time. The PL intensity is strongly dependent on Te precursor concentration, indicating that the ratio of Te to Cd ions affects the particle size and size distribution of the CdTe QDs. Our PL study reveals that the intensity of PL peaks strengthens as the condensation time elongates, implying that annealing by thermal energy transferred during condensation would eliminate defects which act as killing centers in CdTe particles. Our photocurrent study suggests that the CdTe QDs materials are one of the prospective materials for optoelectronics including photodetectors.