• Title/Summary/Keyword: TE wave

Search Result 112, Processing Time 0.031 seconds

Solution for TE Scattering by a Periodic Strip Grating with a Dielectric Slab (유전체 판상의 주기적인 스트립 회절격자에 의한 TE 산란의 해)

  • Lee, Sang-Hoon;Cho, Young-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.20-24
    • /
    • 1990
  • A fast convergent solution to the scattering problem of a transverse electric (TE) plan wave by a periodic strip grating with a dielectric slab is considered. The present method follows from an expansion of the equivalent surface magnetic current placed over the shorted slot according to the equivalence principle in a series of Chebyshev polynomials satisfying the appropriate edge condition. To examine the accuracy and convergence of the present method, the numerical results are calculated for the reflection and transmission coefficients and compared with other results available in the literature.

  • PDF

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Review of analysis for dielectric rectangual waveguides (유전체 구형 도파로 해석에 대한 고찰)

  • 김영태;김병철;이무영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2819-2827
    • /
    • 1997
  • A dielectric waveguide structure using rectangular dielectic strip is analyzed directly in terms of the wave equation for quasi TE and quasi TE and quasiTM modes. This problem can be solved, with no approximation in the wave equation for the electric field $\vec{E}$ and magnetic field $\vec{H}$ inside and outside the dielectric rectangular waveguide matching the boundary conditions between interfaces. This leads to an eigenvalue problem where spurious modes do not appear. Dispersion characeristic examples are presented for square and rectangular waveguides. The formulation is general and can be used for compuarison with ogher methods such as FDM or FEM in various structures.

  • PDF

A Study of Perturbed Electromagnetic Waves in Rectangular Waveguide Filled with atransversely magnetized Semiconductor (정자계를 가한 반도체를 갖는 도파관내의 전자파이동에 관한 연구)

  • 양인응;진연강
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.11 no.2
    • /
    • pp.12-21
    • /
    • 1974
  • Perturbation thorpe for quantum mechanics is extended to the derivation of a power equation for microwave propagation in a rectangular waveguiad filled with N-type silicon which is transversely magnetized. This approximation evolves in a unified manner from the eigenvalue formulation of maxwell's equation wherein the wave numbers are tthe eigenvalues of a linear operator. TE10 wave at 9.61GHz is employed for the experimental investigation of the microwave propagation through a transversely magnetized semiconductor. Results from first order perturbation agree well with the experiment where the bridge method using two Magic Tees is employed.

  • PDF

Visible Wavelength Photonic Insulator for Enhancing LED Light Emission

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • We report design and simulation of a two-dimensional (2D) silicon-based nanophotonic crystal as an optical insulator to enhance the light emission efficiency of light-emitting diodes (LEDs). The device was designed in a manner that a triangular array silicon photonic crystal light insulator has a square trench in the middle where LED can be placed. By varying the normalized radius in the range of 0.3-0.5 using plane wave expansion method (PWEM), we found that the normalized radius of 0.45 creates a large band gap for transverse electric (TE) polarization. Subsequently a series of light propagation simulation were carried out using 2D and three-dimensional (3D) finite-difference time-domain (FDTD). The designed silicon-based light insulator device shows optical characteristics of a region in which light propagation was forbidden in the horizontal plane for TE light with most of the visible light spectrum in the wavelength range of 450 nm to 600 nm.

Half-metallicity and Magnetism of Co2ZrSi/ZnTe(001) Interface: A First-principles Study (Co2ZrSi/ZnTe(001)계면의 자성과 반쪽금속성에 대한 제일원리 연구)

  • Jin, Y.J.;Lee, J.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.147-151
    • /
    • 2007
  • We have investigated the half-metallicity and magnetism for the Heusler ferromagnet $Co_2$ZrSi interfaced with semiconductor ZnTe along the (001) plane by using the full-potential linearized augmented plane wave (FLAPW) method. We considered low types of possible interfaces: ZrSi/Zn, ZrSi/Te, Co/Zn, and Co/Te, respectively. From the calculated density of states, it was found that the half-metallicity was lost at all the interfaces, however for the Co/Te system the value of minority spin density of states was close to zero at the Fermi level. These facts are due to the interface states, appeared in the minority spin gap in bulk $Co_2$ZrSi, caused by the changes of the coordination and symmetry and the hybridizations between the interface atoms. At the Co/Te interface, the magnetic moments of Co atoms are 0.68 and $0.78{\mu}_B$ for the "bridge" and "antibridge" sites, respectively, which are much reduced with respect to that ($1.15{\mu}_B$) of the bulk $Co_2$ZrSi. In the case of Co/Zn, Co atoms at the "bridge" and "antibridge" sites have magnetic moments of 1.16 and $0.93{\mu}_B$, respectively, which are almost same or slightly decreased compared to that of the bulk $Co_2$ZrSi. On the other hand, for the ZrSi/Zn and ZrSi/Te systems, the magnetic moments of Co atoms at the sub-interface layers are in the range of $1.13{\sim}1.30\;{\mu}_B$, which are almost same or slightly increased than that of the bulk $Co_2$ZrSi.

Solution of TE Scattering by a Resistive Strip Grating Over Grounded Dielectric Multilayers (접지된 다층 유전체위의 저항띠 격자구조에 의한 TE 산란의 해)

  • Yoon Uei-Joong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.913-919
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating over grounded dielectric multilayers according to the strip width and grating period, the relative permittivity and thickness of dielectric multilayers, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. Generally, the relected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects that take place and were previously called wood's anomallies$^{[7]}$. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

Analysis of the TE Scattering by a Resistive Strip Grating Over a Grounded Dielectric Plane (접지된 유전체 평면위의 저항띠 격자구조에 의한 TE 산란 해석)

  • Yoon, Uei-Joong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.198-204
    • /
    • 2006
  • In this paper, TE(transverse electric) scattering problems by a resistive strip grating on a grounded dielectric plane according to the strip width and grating period, the relative permittivity and thickness of dielectric layer, and incident angles of a TE plane wave are analyzed by applying the FGMM(Fourier-Galerkin Moment Method) known as a numerical procedure. The induced surface current density is simply expanded in a Fourier series by using the exponential function as a simple function. The reflected power gets increased according as the relative permittivity and thickness of dielectric multilayers gets increased, the sharp variations of the reflected power are due to resonance effects were previously called wood's anomallies[7]. To verify the validity of the proposed method, the numerical results of normalized reflected power for the uniform resistivity R = 0 as a conductive strip case show in good agreement with those in the existing paper.

  • PDF

Ordering of manganese spins in photoconducting $Zn_{1-x}Mn_xTe$

  • Kajitani, T.;Kamiya, T.;Sato, K.;Shamoto, S.;Ono, Y.;Sato, T.;Oka, Y.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.39-43
    • /
    • 1998
  • Single crystals of{{{{ { Zn}_{ 1-x} {Mn }_{x }{Te} }}}} with x=0.3-0.6 were prepared by the standard Bridgeman method. Diffuse neutron diffraction intensities due to the short range magnetic ordering is found in the vicinities of 1 1/2 0 reciprocal point and its equivalent point, indicating that the magnetic correlation of the clusters is the type III antiferromangetic one do the F-type Bravais class crystals, being identical with that of {{{{{ Cd}_{ 1-x} {Mn }_{x }Te }}}}. Neutron inelastic scattering measure-ment has been performed for {{{{{ Zn}_{ 0.6} { Mn}_{ 0.4}Te }}}} sample using the cold neutron spectrometer. AGNES. High resolution measurement with the energy resolution of {{{{ TRIANGLE E= +- .01meV}}}} was carried out in the temperature range from 10K to the ambient. Critical scattering, closely related with the spin glass transition, has been observed for the first time in this semimagnetic semi-conductor. The critical scattering is observed at temperatures in the vicinity of the spin glass transition temperature, 17K. The scattering is observed as a kind of quasielastic scattering in the reciprocal range where the elastic magnetic diffuse scattering has been observed, e.g., 11/20 reciprocal point, indicating the spin fluctuation has dynamic components in this material. Photoconductivity has been discovered below 150K in {{{{{ Zn}_{ 0.4} {Mn }_{0.6 } Te}}}}. The electric AC conductivity has been increased dramatically under the laser light with the wave lengths of {{{{ lambda =6328,5145 and4880 }}}}$\AA$ ,respectively. After the light was darkened, the conductivity was reduced to the original level after about 2000 seconds at 50K, being above the spin glass transition temperature. This phenomenon is the typical persistent photoconductivity; PPC which was similarly found in {{{{ { Zn}_{ 1-x} { Mn}_{x} Te}}}}.

  • PDF