Browse > Article
http://dx.doi.org/10.4283/JKMS.2007.17.4.147

Half-metallicity and Magnetism of Co2ZrSi/ZnTe(001) Interface: A First-principles Study  

Jin, Y.J. (Department of Physics, Inha University)
Lee, J.I. (Department of Physics, Inha University)
Abstract
We have investigated the half-metallicity and magnetism for the Heusler ferromagnet $Co_2$ZrSi interfaced with semiconductor ZnTe along the (001) plane by using the full-potential linearized augmented plane wave (FLAPW) method. We considered low types of possible interfaces: ZrSi/Zn, ZrSi/Te, Co/Zn, and Co/Te, respectively. From the calculated density of states, it was found that the half-metallicity was lost at all the interfaces, however for the Co/Te system the value of minority spin density of states was close to zero at the Fermi level. These facts are due to the interface states, appeared in the minority spin gap in bulk $Co_2$ZrSi, caused by the changes of the coordination and symmetry and the hybridizations between the interface atoms. At the Co/Te interface, the magnetic moments of Co atoms are 0.68 and $0.78{\mu}_B$ for the "bridge" and "antibridge" sites, respectively, which are much reduced with respect to that ($1.15{\mu}_B$) of the bulk $Co_2$ZrSi. In the case of Co/Zn, Co atoms at the "bridge" and "antibridge" sites have magnetic moments of 1.16 and $0.93{\mu}_B$, respectively, which are almost same or slightly decreased compared to that of the bulk $Co_2$ZrSi. On the other hand, for the ZrSi/Zn and ZrSi/Te systems, the magnetic moments of Co atoms at the sub-interface layers are in the range of $1.13{\sim}1.30\;{\mu}_B$, which are almost same or slightly increased than that of the bulk $Co_2$ZrSi.
Keywords
half rnetal/semiconductor; $Co_2$ZrSi; half-metallic; magnetism;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Prinz and K. Hathaway, Physics Today, 48, 24 (1995)
2 S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 294, 1488 (2001)   DOI   ScienceOn
3 E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981)   DOI
4 M. Weinert, E. Wimmer, and A. J. Freeman, ibid., 26, 4571 (1982)   DOI
5 J. P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992)   DOI   ScienceOn
6 D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1977)   DOI   ScienceOn
7 I. Galanakis, Ph. Mavropoulos, and P. H. Dederichs, J. Phys. D: Appl. Phys., 39, 765 (2006)   DOI   ScienceOn
8 S. C. Erwin, S. H. Lee, and M. Scheffler, Phys. Rev. B, 65, 205422 (2002)   DOI   ScienceOn
9 W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965)   DOI
10 R. Amutha, A. Subbarayan, and R. Sathyamoorthy, Cryst. Res. Technol., 41, 1174 (2006)   DOI   ScienceOn
11 X. Q. Chen, R. Podloucky, and P. Rogl, J. Appl. Phys., 100, 113901 (2006)   DOI   ScienceOn
12 S. P. Lewis, P. B. Allen, and T. Saski, Phys. Rev. B, 55, 10253 (1997)   DOI   ScienceOn
13 T. Shishidou, A. J. Freeman, and R. Asahi, Phys. Rev. B, 64, 180401(R) (2001)   DOI   ScienceOn
14 J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, Phys. Rev. Lett., 81, 1953 (1998)
15 S. C. Lee, T. D. Lee, P. Blaha, and K. Schwarz, J. Appl. Phys., 97, 10C307 (2005)
16 I. Galanakis, K. Ozdogan, E. Sasioglu, and B. Aktas, Rev. B, 75, 092407 (2007)   DOI   ScienceOn
17 Y. J. Jin and J. I. Lee, J. Korean Phys. Soc., 51, 155 (2007)   DOI   ScienceOn
18 S. Picozzi, A. Continenza, and A. J. Freeman, J. Phys. Chem. Solids, 64,1697 (2003)   DOI   ScienceOn
19 I. Galanakis, J. Phys.: Condens. Matter, 16, 8007 (2004)   DOI   ScienceOn
20 S. S. Kim, S. C. Hong, and J. I. Lee, Phys. Stat. Sol. (a), 189, 643 (2002)   DOI   ScienceOn
21 R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 50, 2024 (1983)   DOI
22 I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B, 66, 174429 (2002)   DOI   ScienceOn