• Title/Summary/Keyword: TCP transcription factor

Search Result 6, Processing Time 0.021 seconds

NMR Study of Consensus DNA-binding Site for Arabidopsis thaliana Class I Transcription Factor AtTCP1

  • Choi, Yong-Geun;Kim, Hee-Eun;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.2
    • /
    • pp.76-80
    • /
    • 2013
  • The TCP domain is a DNA-binding domain present in plant transcription factors and has a similar structural feature to the bHTH motif of eukaryotic transcription factors. The imino proton exchange study has been performed for the DNA duplex containing the consensus DNA-binding site for the AtTCP11 transcription factor. The first two base pairs in the consensus 5'-GTGGG-3' sequence are relatively very unstable but lead to greater stabilization of the neighboring two G C base pairs. These unique dynamic features of the five base pairs in the consensus DNA sequence might play crucial roles in the effective DNA binding of the AtTCP11 protein.

Temperature dependent hydrogen exchange study of DNA duplexes containing binding sites for Arabidopsis TCP transcription factors

  • Kim, Hee-Eun;Choi, Yong-Geun;Lee, Ae-Ree;Seo, Yeo-Jin;Kwon, Mun-Young;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2014
  • The TCP domain is a DNA-binding domain present in plant transcription factors and plays important roles in various biological functions. The hydrogen exchange rate constants of the imino protons were determined for the three DNA duplexes containing the DNA-binding sites for the TCP11, TCP15, and TCP20 transcription factors using NMR spectroscopy. The M11 duplex displays unique hydrogen exchange property of the five base pairs in the first binding site (5'-GTGGG-3'). However, the M15 and M20 duplexes lead to clear changes in thermal stabilities of these five base pairs. The unique dynamic features of the five base pairs in the first binding site might play crucial roles in the sequence-specific DNA binding of the class I TCP transcription factors.

Human Liver Specific Transcriptional Factor TCP10L Binds to MAD4

  • Jiang, Dao-Jun;Yu, Hong-Xiu;Hexige, Sa-Yin;Guo, Ze-Kun;Wang, Xiang;Ma, Li-Jie;Chen, Zheng;Zhao, Shou-Yuan;Yu, Long
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.402-407
    • /
    • 2004
  • A human gene T-complex protein 10 like (TCP10L) was cloned in our lab. A previous study showed that it expressed specifically in the liver and testis. A transcription experiment revealed that TCP10L was a transcription factor with transcription inhibition activity. In this study, the human MAD4 was identified to interact with TCP10L by a yeast two-hybrid screen. This finding was confirmed by immunoprecipitation and subcellular localization experiments. As MAD4 is a member of the MAD family, which antagonizes the functions of MYC and promotes cell differentiation, the biological function of the interaction between TCP10L and MAD4 may be to maintain the differentiation state in liver cells. Also, we propose that the up-regulation of Myc is caused by the down-regulation of TCP10L in human hepatocarcinomas.

Sorghum TCP transcription factor MULTISEED1 affects grain yield regulating at pedicellate spikelet fertility

  • Lee, Young Koung;Jiao, Yinping;Gladman, Nicholas;Chopra, Ratan;Burow, Gloria;Burke, John;Xin, Zhanguo;Ware, Doreen
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.25-25
    • /
    • 2017
  • Inflorescence architecture mainly contributes to final grain yield in crops. Sorghum inflorescence is basically composed of one fertile sessile spikelet (SS) and two infertile pedicellate spikelets (PS). To identify regulatory factors involved in the inflorescence architecture, we screened an EMS mutagenesis population from the pedigreed sorghum mutant library. We found inflorescent architecture mutants, named as multi-seed mutants, msd, with gained fertile ability in PS and also an increased number of floral branches. In natural sorghum populations, it is not common that are fertile. A detailed dissection of developmental stages of wild type and msd1 mutant described that the PS in wild type do not have floral organs, including ovary, stigma, filament and anther, while the msd1 mutants generate intact floral organ in the sessile spikelet. We found MSD1 encoded a TCP transcription factor using bulk segregant analysis (BSA) of F2 population, and was a strongly enriched expression during inflorescence developmental stages. We proposed that MSD1 functions to suppress floral organ maintenance at PS during inflorescence development in Sorghum. To explore the regulatory network associated with PS fertility, whole genome expression profiling was performed at 4 different developmental stages in 6 various tissue types between wild type and msd1. Taken together, we demonstrated that MSD1 was involved in the plant hormone and maybe influenced program cell death in PS via the activation of plant hormonal pathway.

  • PDF

THE EFFECTS OF ${\beta}-TCP$/rhBMP-2 ON BONE FORMATION IN OSTEOBLAST-LIKE CELLS INDUCED FROM BONE MARROW-DERIVED MESENCHYMAL STEM CELLS (골수유래줄기세포에서 분화된 골유사세포에서 ${\beta}-TCP$와 rhBMP-2의 골형성 효과에 관한 연구)

  • Choi, Yong-Soo;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.4
    • /
    • pp.419-427
    • /
    • 2008
  • The present study aimed to investigate the osteogenic potentials of differentiated osteoblast-like cells (DOCs) induced from bone marrow-derived mesenchymal stem cells (MSCs) on ${\beta}-tricalcium$ phosphate (${\beta}-TCP$) with recombinant human bone morphogenetic protein (rhBMP-2) in vitro. Osteoblast differentiation was induced in confluent cultures by adding 100 nM dexamethasone, 10 mM ${\beta}$-glycerophosphate, 50 mM L-ascorbic acid. The Alizarin red S staining and reverse transcriptase-polymerase chain reaction (RT-PCR) were perfomed to examine the mRNA expression of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN), receptor activator for nuclear factor ${\kappa}B$ ligand (RANKL), runt-related transcription factor 2 (RUNX2), collagen-Ⅰ (COL-Ⅰ). There were no significant differences in the osteogenic potentials of DOCs induced from MSCs on ${\beta}-TCP(+/-)$. According to the incubation period, there were significant increasing of Alizadin red S staining in the induction 3 weeks. The mRNA expression of ALP, RUNX2, and RANKL were higher in DOCs/${\beta}-TCP(-)$ than DOCs/${\beta}-TCP(+)$. According to rhBMP-2 concentrations, the mRNA expression of BSP was significantly increased in DOCs/${\beta}-TCP(+)$ compared to that of DOCs/${\beta}-TCP(-)$ on rhBMP 10 ng/ml. Our study presented the ${\beta}-TCP$ will have the possibility that calcium phosphate directly affect the osteoblastic differentiation of the bone marrowderived MSCs.

Transcriptome profiling of rubber tree (Hevea brasiliensis) discovers candidate regulators of the cold stress response

  • Gong, Xiao-Xiao;Yan, Bing-Yu;Hu, Jin;Yang, Cui-Ping;Li, Yi-Jian;Liu, Jin-Ping;Liao, Wen-Bin
    • Genes and Genomics
    • /
    • v.40 no.11
    • /
    • pp.1181-1197
    • /
    • 2018
  • Tropical plant rubber tree (Hevea brasiliensis) is the sole source of commercial natural rubber and low-temperature stress is the most important limiting factor for its cultivation. To characterize the gene expression profiles of H. brasiliensis under the cold stress and discover the key cold stress-induced genes. Three cDNA libraries, CT (control), LT2 (cold treatment at $4^{\circ}C$ for 2 h) and LT24 (cold treatment at $4^{\circ}C$ for 24 h) were constructed for RNA sequencing (RNA-Seq) and gene expression profiling. Quantitative real time PCR (qRT-PCR) was conducted to validate the RNA-Seq and gene differentially expression results. A total of 1457 and 2328 differentially expressed genes (DEGs) in LT2 and LT24 compared with CT were respectively detected. Most significantly enriched KEGG pathways included flavonoid biosynthesis, phenylpropanoid biosynthesis, plant hormone signal transduction, cutin, suberine and wax biosynthesis, Pentose and glucuronate interconversions, phenylalanine metabolism and starch and sucrose metabolism. A total of 239 transcription factors (TFs) were differentially expressed following 2 h or/and 24 h of cold treatment. Cold-response transcription factor families included ARR-B, B3, BES1, bHLH, C2H, CO-like, Dof, ERF, FAR1, G2-like, GRAS, GRF, HD-ZIP, HSF, LBD, MIKC-MADS, M-type MADS, MYB, MYB-related, NAC, RAV, SRS, TALE, TCP, Trihelix, WOX, WRKY, YABBY and ZF-HD. The genome-wide transcriptional response of rubber tree to the cold treatments were determined and a large number of DEGs were characterized including 239 transcription factors, providing important clues for further elucidation of the mechanisms of cold stress responses in rubber tree.