• Title/Summary/Keyword: TCP Performance

Search Result 725, Processing Time 0.021 seconds

A New Queueing Algorithm for Improving Fairness between TCP Flows (TCP 플로우 간의 공정성 개선을 위한 새로운 큐잉 알고리즘)

  • Chae, Hyun-Seok;Choi, Myung-Ryul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.235-244
    • /
    • 2004
  • TCP Vegas version provides better performance and more stable services than TCP Tahoe and Reno versions, which are widely used in the current Internet. However, in the situation where TCP Vegas and Reno share the bottleneck link, the performance of TCP Vegas is much smaller than that of TCP Reno. This unfairness is due to the difference of congestion control mechanisms of each TCP use. Several studies have been executed in order to solve this unfairness problem. In this paper, we analyze the minimum window size to maintain the maximum TCP performance of link bandwidth. In addition, we propose an algorithm which maintains the TCP performance and improves fairness by selective packet drops in order to allocate proper window size of each TCP connections. To evaluate the performance of the proposed algorithm, we have measured the number of data bytes transmitted between end-to-end systems by each TCP connections. The simulation results show that the proposed algorithm maintains the maximum TCP performance and improves the fairness.

Performance Improvement Method of TCP Protocol using Splitting Acknowledgement Packet in Integrated Wired-Wireless Network (유무선 복합망에서 Acknowledgement 패킷의 분할을 통한 프로토콜의 성능향상 기법)

  • Jin, Gyo-Hong
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In this paper, in order to improve the performance of TCP short traffic application services in wireless Internet environments, the Split-ACKs (SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless lints results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end Performance degradation of TCP. In this paper, to alleviate the TCP Performance, the SPACK method, split acknowledgement Packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analysed and shows better performance than traditional TCP Protocol.

Split-ACK Scheme for Performance Improvement of TCP Short Traffic in Wireless Environment (무선환경에서 짧은 TCP 트래픽의 성능향상을 위한 응답패킷 분할 전송 기법)

  • 진교홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.923-930
    • /
    • 2001
  • In this paper, in order to improve the performance of TCP short traffic services in wireless Internet environments, the Split-ACKs(SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless links results in congestion control procedure of TCP being invoked at the source. This causes severe end-to-end performance degradation of TCP. In this paper, to alleviate the TCP performance, the SPACK method, split acknowledgement packets in the base station, is proposed. Using computer simulation, the performance of TCP using SPACK is analyzed and shows better performance than traditional TCP protocol.

  • PDF

TCP Performance Improvement Scheme on Dynamic Wireless Environment over UMTS System (UMTS 시스템에서 동적 무선 환경 변화에 따른 TCP 성능 향상 기법)

  • Kim, Nam-Ki;Park, In-Yong;Yoon, Hyun-Soo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.943-954
    • /
    • 2003
  • The mobile telecommunication system has been growing exponentially after 1990s due to the high population in a city and the growth of mobile user. In this time, the current mobile system mainly concentrates on the voice communication. However, in the next generation, mobile users want to get very diverse services via mobile terminal such as the Internet access, web access, multimedia communication, and etc. For this reason, the next generation system, such as the UMTS (Universal Mobile Telecommunication Services) system, has to support the packet data service and it will play the major role in the system. By the way, since the Web service is based on TCP, most of the Internet traffic TCP traffic. Therefore, efficient transmission of TCP traffic will take very important role in the performance of packet data service. There are many researches about improving TCP performance over wireless network. In those schemes, the UMTS system adapts the link layer retransmission scheme. However, there are rarely studies about the exact performance of the link layer retransmission scheme in the face of dynamic changes of wireless environment over the UMTS system. The dynamic changes of wireless environment, such as wireless bandwidth, can degrade TCP performance directly. So, in this paper, we simulate and analyze the TCP performance in the UMTS system with dynamic wireless environments. Then, we propose a simple scheme for minimizing TCP performance degradation. As a result of simulation, we can find that when wireless environment is changed dynamically, the probability of TCP timeout is increased, and the TCP performance is degraded very much. In this situation, the proposed simple scheme shows good performance. It saves wireless resources and reduces the degradation of TCP performance without large overhead of the base station.

Improving TCP Performance with Bandwidth Estimation and Selective Negative Acknowledgment in Wireless Networks

  • Cheng, Rung-Shiang;Lin, Hui-Tang
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.236-246
    • /
    • 2007
  • This paper investigates the performance of the transmission control protocol (TCP) transport protocol over IEEE 802.11 infrastructure based wireless networks. A wireless link is generally characterized by high transmission errors, random interference and a varying latency. The erratic packet losses usually lead to a curbing of the flow of segments on the TCP connection and thus limit TCP's performance. This paper examines the impact of the lossy nature of IEEE 802.11 wireless networks on the TCP performance and proposes a scheme to improve the performance of TCP over wireless links. A negative acknowledgment scheme, selective negative acknowledgment (SNACK), is applied on TCP over wireless networks and a series of ns-2 simulations are performed to compare its performance against that of other TCP schemes. The simulation results confirm that SNACK and its proposed enhancement SNACK-S, which incorporates a bandwidth estimation model at the sender, outperform conventional TCP implementations in 802.11 wireless networks.

A Simple Model for TCP Loss Recovery Performance over Wireless Networks

  • Kim, Beomjoon;Lee, Jaiyong
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2004
  • There have been a lot of approaches to evaluate and predict transmission control protocol (TCP) performance in a numerical way. Especially, under the recent advance in wireless transmission technology, the issue of TCP performance over wireless links has come to surface. It is because TCP responds to all packet losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. By several previous works, although it has been already proved that overall TCP performance is largely dependent on its loss recovery performance, there have been few works to try to analyze TCP loss recovery performance with thoroughness. In this paper, therefore, we focus on analyzing TCP's loss recovery performance and have developed a simple model that facilitates to capture the TCP sender's behaviors during loss recovery period. Based on the developed model, we can derive the conditions that packet losses may be recovered without retransmission timeout (RTO). Especially, we have found that TCP Reno can retransmit three packet losses by fast retransmits in a specific situation. In addition, we have proved that successive three packet losses and more than four packet losses in a window always invoke RTO easily, which is not considered or approximated in the previous works. Through probabilistic works with the conditions derived, the loss recovery performance of TCP Reno can be quantified in terms of the number of packet losses in a window.

Improving TCP-Vegas Performance over Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 TCP-Vegas 성능향상 기법)

  • Bae Han-Seok;Song Jeom-Ki;Kim Dong-Kyun;Park Jung-Soo;Kim Hyoung-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.221-231
    • /
    • 2006
  • TCP is needed as a transport protocol to provide reliable end-to-end message delivery for MANETs in order to achieve a smooth integration with the fixed Internet. Particularly, TCP has its variants, namely TCP-Reno and TCP-Vegas. However, there has been no research work on extensive performance comparison of TCP-Reno and TCP-Vegas over AODV and OLSR. This paper is the first trial to perform the research by using ns-2 simulator. Through the extensive simulations, we found that which to select among routing protocols is more important than which to select among TCP variants, because the performance difference between TCP-Reno and TCP-Vegas over uy selected routing protocol is not so much outstanding. Particularly, TCP-Vegas relies on an accurate BaseRTT estimation in order to decide the sending rate of a TCP Sender. However, it cannot be directly applied to MANET because a route change makes the Base an used over a Previous Path obsolete. Therefore, we propose a technique for improving the performance of TCP-Vegas by considering the route change, and show the performance improvement through simulation study.

Split-Acks Scheme for Performance Improvement of TCP Short Traffic Service in Wireless Environments (무선환경에서 TCP Short Traffic 서비스의 성능향상을 위한 응답패킷 분할 전송 기법)

  • 진교홍
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.307-312
    • /
    • 2000
  • In this paper, in order to improve the performance of TCP short traffic services in wireless Internet environments, the Split-ACKs(SPACK) scheme is proposed. In wireless networks, unlike wired networks, packet losses will occur more often due to high bit error rates. Therefore, each packet loss over wireless links results in congestion control procedure of TCP being invoked at the source. This causes severs end-to-end performance degradation of TCP. In this paper, to alleviate the TCP performance, the SPACK method split acknowledgement packets in the base station is proposed. Using computer simulation the performance of TCP using SPACK is analyzed and shows better performance than traditional TCP protocol.

  • PDF

A Network-Aware Congestion Control Scheme for Improving the Performance of C-TCP over HBDP Networks (HBDP 네트워크에서 C-TCP의 성능 향상을 위한 네트워크 적응적 혼잡제어 기법)

  • Oh, Junyeol;Yun, Dooyeol;Chung, Kwangsue
    • Journal of KIISE
    • /
    • v.42 no.12
    • /
    • pp.1600-1610
    • /
    • 2015
  • While today's networks have been shown to exhibit HBDP (High Bandwidth Delay Product) characteristics, the legacy TCP increases the size of the congestion window slowly and decreases the size of the congestion window drastically such that it is not suitable for HBDP Networks. In order to solve this problem with the legacy TCP, many congestion control TCP mechanisms have been proposed. C-TCP (Compound-TCP) is a hybrid TCP which is a synergy of delay-based and loss-based approaches. C-TCP adapts the decreasing rate of the delay window without considering the congestion level, leading to degradation of performance. In this paper, we propose a new scheme to improve the performance of C-TCP. By controlling the increasing and decreasing rates according to the congestion level of the network, our proposed scheme can improve the bandwidth occupancy and fairness of C-TCP. Through performance evaluation, we show that our proposed scheme offers better performance in HBDP networks as compared to the legacy C-TCP.

Drop Policy Considering Performance of TCP in Optical Burst Switching Networks (Optical Burst Switching Network에서 TCP 성능을 고려한 Drop Policy)

  • 송주석;김래영;김현숙;김효진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.203-209
    • /
    • 2004
  • In OBS networks, the burst dropping due to contention significantly affects the performance of TCP, but existing drop policies have not considered this problem and researches related to TCP have been mainly studied on burst assembling. We propose the drop policy considering retransmission of TCP to improve the performance of TCP in OBS networks. The proposed drop policy is the Retransmission Count-based DP that regards retransmission count of bursts as priority when it selects dropping burst. This paper evaluates the performance of RC-based DP model and general DP model using ns-2. The metrics of performance evaluation are TCP throughput, maximum sequence number of received TCP packets and drop rate of packet as simulation time increases.