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Improving TCP Performance with Bandwidth Estimation
and Selective Negative Acknowledgment in Wireless
Networks

Rung-Shiang Cheng and Hui-Tang Lin

Abstract: This paper investigates the performance of the transmis-
sion control protocol (TCP) transport protocol over IEEE 802.11
infrastructure based wireless networks. A wireless link is gener-
ally characterized by high transmission errors, random interfer-
ence and a varying latency. The erratic packet losses usually lead
to a curbing of the flow of segments on the TCP connection and
thus limit TCP’s performance. This paper examines the impact of
the lossy nature of IEEE 802.11 wireless networks on the TCP per-
formance and proposes a scheme to improve the performance of
TCP over wireless links. A negative acknowledgment scheme, se-
lective negative acknowledgment (SNACK), is applied on TCP over
wireless networks and a series of ns-2 simulations are performed to
compare its performance against that of other TCP schemes. The
simulation results confirm that SNACK and its proposed enhance-
ment SNACK-S, which incorporates a bandwidth estimation model
at the sender, outperform conventional TCP implementations in
802.11 wireless networks.

Index Terms: Congestion control, IEEE 802.11, selective negative
acknowledge ment (SNACK), transmission control protocol (TCP).

I. INTRODUCTION

Mobile, high-speed wireless networks have attracted consid-
erable interest in recent years due to the proliferation of mo-
bile computing devices and their ease of deployment. New stan-
dards for wireless local area networks (WLANSs) have greatly
improved data transmission speeds and have prompted the de-
velopment of high-speed mobile data communication services
which are expected to make possible a wide range of new appli-
cations over the coming years.

IEEE 802.11 has emerged as the standard of choice for local
wireless data networks nowadays. 802.11b provides transmis-
sion speeds of up to 11 Mbps with fall-back rates of 5.5 Mbps,
2 Mbps and 1 Mbps, respectively. To meet the expected growth
in bandwidth demand in the future, the channel speeds of the
802.11 protocols continue to increase. For example, 802.11aand
802.11g both support 54 Mbps, while enhanced versions operate
at speeds up to 108 Mbps.

To support the requirement for reliable transmission, a signif-
icant amount of today’s Internet traffic, including WWW, FTP,
E-mail, and remote access traffic, is carried by the TCP transport
protocol. This protocol was originally designed for wired, rel-
atively reliable propagation networks, and its design makes nu-
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merous assumptions typical of such wired environments [1], [2].
However, a wireless link is generally characterized by an un-
predictable bit-error rate and varying latencies. The propagation
latency, limited bandwidth, and error-prone links of wireless en-
vironments limit the application performance. Hence, wireless
environments pose formidable challenges when attempting to
provide reliable, end-to-end data transmission for transport pro-
tocols such as TCP.

When packets are lost in networks for reasons other than con-
gestion, the invoked congestion control routines curb the flow of
segments on the TCP connection, and therefore reduce the TCP
end-to-end throughput. Several proposals to resolve this prob-
lem have been reported in recent years [3]-[7]. Basically, the
proposed methods either modify the TCP mechanisms them-
selves or modify the medium access control (MAC) protocol
to enable TCP to differentiate between transmission errors and
network congestion. Although these approaches are effective in
some cases, they produce less satisfactory results in others.

A recently proposed development called congestion coher-
ence [8] proposes TCP source and receiver to be modified to cor-
relate packet losses with the return packets with the explicit con-
gestion notification (ECN) [9] mechanism. This scheme takes
advantage of the temporal coherence of ECN marks to find the
causes of packet losses. However, it requires ECN to be fully
supported in all routers in the wired network.

This study aims to enhance the TCP performance by modifying
only the TCP transport layer protocol; leaving the functionality
of the MAC protocol and the intervening network unchanged. A
negative acknowledgment with bitmap scheme, named selective
negative acknowledgment (SNACK), is introduced for TCP con-
gestion control in wireless environments. Ns-2 simulations are
performed to investigate the performance of TCP using various
recovery schemes over an 802.11 infrastructure based environ-
ment. In the simulations, the Gilbert-Elliot burst error model is
applied to mimic the behavior of link-level channel error.

The remainder of this paper is organized as follows. Section II
provides a brief description of the IEEE 802.11 standard and the
TCP protocol. Section III describes various schemes presented
in the literature designed to improve the performance of TCP
over wireless links. Section I'V presents the SNACK scheme and
its proposed enhancement, SNACK-S. Section V describes the
results of the performance evaluation simulations. Finally, Sec-
tion VI presents some brief conclusions.

II. IEEE 802.11 BACKGROUND

Due to differences in the physical layer, wireless devices
and networks possess distinct characteristics which differentiate
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them from wired networks and elements. Depending on the net-
work formation method and the network architecture, two op-
erational modes can be identified for 802.11 technologies, i.e.
infrastructure-based and infrastructureless (or ad hoc). The for-
mer provides wireless access and the range extension of pre-
constructed communication infrastructures. In such networks,
the wireless stations connect to wireless access points (APs),
which function as a bridge for every packet sent or received by
the wireless station. Conversely, in ad hoc networks, temporary
networks are formed by an arbitrary set of independent nodes
within a limited area and capable of self-configuration without
the need of stationary infrastructure networks.

The IEEE 802.11 standard specifies both the physical layer
and the MAC layer [10]. The 802.11 MAC protocol defines
two different service types, namely a contention-based distrib-
uted coordination function (DCF) and a contention-free point
coordination function (PCF). The DCF service operates strictly
alone in ad hoc networks, but can operate either alone or with
the PCF service in infrastructure-based networks. DCF is the ba-
sic access method for 802.11 and is based on the carrier sense
multiple access-collision avoidance (CSMA/CA) scheme [11].
DCF comprises both a basic access method and an optional vir-
tual carrier sensing method based on RTS/CTS exchanges.

In 802.11 DCEF, priority access to the wireless medium is con-
trolled by applying an inter-frame space (IFS) time between the
frame transmissions. The station may proceed with its transmis-
sion if the medium is sensed to be idle for an interval larger than
the distributed inter-frame space (DIFS). If the medium is cur-
rently busy, or becomes busy during this interval, the transmit-
ter defers the frame transmission until it detects a DIFS. At this
point, the transmitter selects a random interval, referred to as the
backoff time, to determine the moment at which to commence
transmission. The backoff time is an integer number of slots,
uniformly chosen from the interval (0, CW—1), where CW
is the backoff window, also referred to as the contention win-
dow. The backoff number counts down slot-by-slot, and when it
reaches zero, the frame is transmitted.

Due to the nature of wireless signal propagation, stations in
the network are unable to detect a collision simply by listen-
ing to their own transmissions. Therefore, an immediate positive
acknowledgment (ACK) technique is employed to confirm the
successful reception of a frame. Specifically, having received a
frame, the receiver waits for a short inter-frame space (SIFS) and
then transmits a positive MAC acknowledgment to the transmit-
ter, confirming that the frame has been correctly received. The
SIFS is deliberately assigned a shorter interval than the DIFS
in order to assign the receiving station a higher priority than any
other stations waiting to make a transmission. The positive ACK
is only transmitted if the frame is received correctly. Hence, if
the transmitter does not receive an ACK, it assumes that the data
frame must have been lost and therefore schedules a retransmis-
sion. (For the details of the basic operations involved in 8§02.11
DCE, please refer to [12]).

To alleviate the hidden-station problem, 802.11 DCF also pro-
vides an optional channel access method using a virtual car-
rier sensing mechanism based on the use of two special con-
trol frames, namely, request-to-send (RTS) and clear-to-send
(CTS). Before transmitting a frame, the transmitter transmits

an RTS frame to ask the receiver. Once the receiver receives
this RTS frame, it waits for the specified SIFS interval and then
sends a CTS frame to the transmitter. The neighbors of both
the transmitter and the receiver overhear these frames and con-
sider the medium to be reserved for the duration of the trans-
mission. Although this mechanism can reduce collisions, which
helps to combat hidden-terminal problem, RTS/CTS exchange
introduces delay, and consumes channel resources. For this rea-
son, this mechanism is only used to reserve the channel for the
transmission of a long DATA frame.

In unicasting, the 802.11 MAC layer retransmits a packet a
maximum of n times before discarding it. However, even with
the retransmission mechanism in the MAC layer, packets may
still be discarded without being handed over to the transport
layer due to spurious interference or channel collisions [5], [13].
Since TCP regards packet loss as a sign of network conges-
tion, it reacts by reducing the size of its congestion window,
which in turn leads to a reduction of the TCP performance [14].
This issue is particularly serious in wireless networks with large
bandwidth delays. In such networks, recovery from the multiple
packet losses which may occur with a large congestion window
can lead to considerable delays, and this further degrades the
TCP performance.

III. RELATED STUDIES OF TCP OVER 802.11
WIRELESS LINKS

TCP is a reliable end-to-end acknowledgment-clocking win-
dow based protocol. TCP controls the sending rate using a con-
gestion window parameter. The manner in which TCP adjusts
the congestion window depends on the size of the current con-
gestion window size relative to the prescribed slow start thresh-
old. When congestion window is less than slow start threshold,
TCP is said to be in its slow start phase and the size of the con-
gestion window is increased exponentially. However, when the
threshold limit is reached, TCP enters the congestion avoidance
phase and increases the congestion window linearly [2]. The
TCP sender updates the size of the congestion window for each
ACK received in accordance with the following function:

(1) Receipt of new (non-repeated) ACK:

W < W, set W = W + 1 (Slow start phase), else set
W =1+ 1/W (Congestion avoidancephase).

(2) Receipt of duplicate ACK:
Increment duplicate ACK count for segment being
ACKed. When duplicate ACK count exceeds specified

threshold, retransmit “next expected” packet; set W, =
W/2, then set W = W,

(3) Upon timer expiry:

Set W, = W/2, then set W = 1; recover lost packets
from slow start phase.

Parameters W and W; are referred to as the current conges-
tion window size and the slow start threshold, respectively. Be-
cause a TCP sender increases its window size each time a new
ACK is received from the receiver and decreases the conges-
tion size by a factor of two when the path is congested (i.e.,
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Fig. 1. Structure of SACK and SNACK options: (a) SACK, (b)SNACK.

packet loss occurs), TCP is commonly referred to as an additive-
increase and multiplicative-decrease (AIMD) algorithm.

TCP Tahoe [1], Reno [2], NewReno [15], and SACK [16]
are some of the commonly deployed variants of window based
congestion control technique. These traditional TCP congestion
control/avoidance techniques are proven to be effective in the
wired networks of Internet. But this is not true in wireless net-
works, where packet loss and delay become more serious due to
congestion as well as time varying nature of the wireless chan-
nel. This section summarizes various mechanisms reported in
the literature for improving the performance of TCP over wire-
less links.

A. Split-Connection Schemes

One method for dealing with erratic errors on a wireless link
is to split the wireless portion of the network from the conven-
tional TCP connection. The indirect-TCP scheme (commonly
referred to as I-TCP) in [4] is one such scheme. I-TCP splits an
end-to-end TCP flow into two separate TCP connections, i.e., a
regular TCP connection over the wired network and a wireless
TCP connection over the wireless link. Under this approach, any
corrupted packets are retransmitted directly through base sta-
tions on the wireless part of the path such that the wired con-
nection is unaware of the wireless losses. In this way, the trans-
port layer is isolated from the erratic behavior of the wireless
link. However, a major drawback of this split-connection ap-
proach is that it fails to preserve the TCP end-to-end semantics
because an ACK originating from the base station may reach
the sender side before the corresponding data packet reaches its
destination.

Balakrishnan et al. [3], [17] proposed the use of a snoop
agent to confine the retransmissions to the wireless part of the
path. In their approach, the TCP packets were sniffed on a per-
connection basis such that the corrupted packets could be trans-
parently retransmitted without breaking the TCP end-to-end se-
mantics. Under this approach, if a packet is deemed to be lost on
the wireless link, the packet is retransmitted by the agent from

its local cache and the end-to-end semantics are maintained by
suppressing the ACKs until the retransmitted packet has been
successfully received at its destination.

However, this local-retransmission approach requires the base
station to maintain state information and to cache unacknowl-
edged packets for every TCP connection passing through it.
Furthermore, performing retransmissions locally may affect the
round-trip time (RTT) estimation by the TCP source, and this in
turn can impair the ability of TCP to detect congestion losses.

B. Link-Layer Schemes

As discussed earlier, the principal cause of TCP performance
degradation over wireless links is the inability of TCP to de-
termine whether a packet was lost as a result of packet corrup-
tion or as a consequence of congestion. Accordingly, the ex-
plicit loss notification (ELN) scheme [18] has been developed
to provide TCP with the ability to differentiate between cor-
ruption and congestion losses, thus allowing the sender to re-
act appropriately in each case. Under the ELN scheme, the base
station keeps track of all the TCP segments which arrive over
the wireless link, but does not cache any of them. Whenever
the base station detects a non-congestion loss, it sets the ELN
bit in the subsequent TCP header and propagates the segment
to the receiver, which then echoes it back to the TCP sender.
When it receives the ELN notification, the TCP sender at the
wireless host retransmits the lost packet without invoking con-
gestion control. However, the ELN mechanism does not take
ACK losses into account. Furthermore, implementing ELN re-
quires not only modification of the transport layer of the sender-
receiver-pair, but also the use of an ELN agent at the intermedi-
ate base station.

C. End-to-End Schemes

When multiple packets are lost in the same transmission win-
dow, conventional TCP schemes can only infer the first packet to
have been lost from the duplicate ACKs received. After retrans-
mitting the lost packet, the sender must then wait to receive new
duplicate ACKs before it can detect the next lost packet. As a
result, conventional TCP (e.g., Tahoe, Reno, and NewReno) can
only recover from a single loss event per RTT. However, wire-
less links may frequently corrupt multiple packets per window,
leading to a high-error recovery delay, and particularly over long
delay paths [14].

One approach for dealing with multiple segment losses is for
the data-receiver to inform the sender of the segments which
it has received. Selective acknowledgment (SACK) [16] is one
such scheme. In SACK, the data-receiver provides the sender
with an image of the set of non-contiguous data blocks currently
residing in its buffer by applying a so-called SACK option in the
TCP header of the ACK packets. As shown in Fig. 1(a), the first
block in a SACK option identifies the most-recently-received
data block, while the remaining blocks repeat the most recently
reported SACK blocks. Using this information, the sender can
then retransmit only the segments which have been lost.

SACK has been proposed as a complement to the traditional
cumulative ACK scheme. A SACK option which specifies n
blocks will have a total length of 8 X n + 2 bytes (see Fig. 1(a)).
However, since the maximum length of the TCP header options
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is 40 bytes {1], when other options, e.g., Timestamp, are also
used, the maximum number of SACK blocks which can be sig-
naled in a single SACK option is reduced to just three. Conse-
quently, a single ACK with the SACK option cannot provide the
complete status of the receiver buffer if the number of blocks
required to do so is greater than three. Therefore, the sender is
obliged to examine multiple successive ACKs in order to acquire
a complete image of the receiver buffer. However, as described
in [19], if a number of successive ACK packets are dropped in
the network, the sender may be unaware that the receiver has
received a packet, and may therefore execute redundant retrans-
missions. This problem is particularly acute in error-prone wire-
less environments.

IV. THE SNACK SCHEME AND PROPOSED ERROR
RECOVERY PROCEDURE

A. SNACK Basis

The SNACK [20], [21] scheme is a transport layer acknowl-
edgment scheme which integrates the respective capabilities of
SACK and negative acknowledgment (NAK). SNACK is similar
to the solution standardized as the cumulative ACK with bitmap
in IEEE 802.16 [22] (similar to the selective repeat ARQ with
partial bitmap (SRPB) in HIPERLLAN/2 [23]). The basic re-
transmission mechanism of SNACK is kept in TCP ACK, but
packet loss information is constructed with bitmaps, so that the
overhead of acknowledgments can be reduced.

As in the SACK scheme, under SNACK, the receiver informs
the sender of the segments which it has not received. Unlike
SACK, however, SNACK is capable of specifying a large num-
ber of holes in a bit-efficient manner. Therefore, the receiver can
provide the sender with a complete image of the receiver buffer
within a single ACK simply by specifying a list of the segments
which are missing. Hence, the sender will not inadvertently re-
transmit segments which have already been successfully cached
in the receiver buffer. Asin SACK, SNACK uses the option field
in the TCP header to convey the SNACK information. Fig. 1(b)
illustrates the structure of a SNACK option. The hole 1 offset
field specifies the starting location, while the size of the first
hole is indicated in the hole I length field. Both the offset and
the length values are expressed in terms of the number of max-
imum segment size (MSS) units. The optional variable-length
bit-vector reports zero or more additional holes, which are also
expressed in terms of MSS-sized blocks. The bit-vector maps
the sequence space of the receiver buffer beyond the end of the
block specified by the first hole. Each zero in the bit-vector sig-
nifies missing data in the corresponding MSS-sized block of the
receiver buffer.

As described above, the receiver uses the bit-vector field to
inform the sender of the MSS-sized blocks which have been re-
ceived and those which have not. Fig. 2(a) illustrates a hypo-
thetical out-of-sequence queue formed at the receiver buffer. In
this figure, ACKed is the last consecutive ACK up to which all
of the data has been correctly received.

When out-of-order segments arrive at the TCP receiver, it
scans its received buffer, invokes SNACK options, and then
sends these options out on the outgoing ACK segment. Impor-
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Fig. 2. SNACK example: (a) Receiver side buffer, (b} SNACK segment
when bit-vector is used.

tantly, as shown in Fig. 2(b), a SNACK option only occupies a
small number of bytes in the TCP header when specifying the
bit-vector. This is particularly advantageous when the out-of-
sequence queue is large or when large windows are operated
over long delay paths.

B. Proposed Error Recovery Procedure

Upon receipt of a SNACK option from the receiver, the sender
checks the bit-vector and immediately retransmits any segments
necessary to fill the holes. In the proposed implementation,
whenever the lost packets indicated by SNACK are retransmit-
ted, the sender sets the expected recovery sequence number to
the highest sequence number sent so far in order to keep track
of the recovery segment in the error recovery phase. The error
recovery phase (which includes fast retransmission and fast re-
covery) is triggered when the sender receives a SNACK and ter-
minates when it receives acknowledgment that all of the trans-
mitted data has been received. The sender waits for triple dupli-
cate ACKs before it reconfigures the congestion window, slow
start threshold, and then enters the fast recovery phase.

During the fast recovery phase, the sender increases its con-
gestion window size by one segment every time it receives a du-
plicate ACK. Thus, the TCP sender can transmit a new packet to
fill the pipe from the source to the destination if it is possible to
do so under the new window size. The sender checks for any re-
transmission losses by examining the bit-vector of the SNACK
option. If the SNACK option indicates that the packet beyond
the expected recovery sequence number has been cached in the
receiver buffer, the sender retransmits the first hole indicated in
the SNACK option and updates the retransmission timer since
the previously retransmitted packet may have been lost again.

The receiver acknowledges a correctly received segment
whether or not it arrives in the correct sequence. Out-of-order
packets are buffered until the missing or corrupted segments
are received. By inspecting the SNACK option, the sender can
identify any holes in the receiver buffer and can therefore ver-
ify whether or not the retransmitted segments have been suc-
cessfully received. For example, in Fig. 3(a), by examining the
ACKed sequence number and the history information provided
by the SNACK option, the sender can perceive that the retrans-
mitted segment 1 has not yet been received and must therefore
be retransmitted immediately.

If the returned SNACK for the previous retransmitted packet
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Fig. 3. NACK bit-vector example: (a) Retransmitted segment 6 received
but segment 1 not received, (b) retransmitted segment 1 received but
segment 6 not received.

acknowledges a new ACK sequence number (as illustrated in
Fig. 3(b)), this ACK is deemed to be a partial ACK because
not all of the transmitted packets have been acknowledged. In
this event, the sender remains in the fast recovery phase until
all of the outstanding data packets up to the expected recovery
sequence number have been on ACKed.

The proposed modified error recovery procedure described
above alleviates the multiple-packet-loss problem. Hence, when
retransmitted packets are lost repeatedly as a result of transmis-
sion errors, SNACK has a higher success rate in retransmitting
the lost packets without retransmission timeouts occurring. The
ability of this modified error recovery procedure to respond ro-
bustly to errors is of particular importance in wireless environ-
ments, which are characterized by a relatively high corruption
probability of the packets and their ACKs.

C. Enhancing the SNACK Startup Procedure

Burst random losses in wireless links usually result in a small
window size, and hence only relatively few data packets can be
delivered per round-trip. Under such conditions, the TCP source
will spend excessive time in attaining an acceptable bandwidth
usage, and consequently the link utilization will be degraded. As
discussed in [24], [25], this induces a considerable performance
cost, particularly for high-speed networks with long delay paths.

Since channel errors on wireless links usually result in a re-
duction of the TCP window size, and a corresponding reduc-
tion in the transmission rate, a more appropriate growth strat-
egy must be considered for wireless environments. Accordingly,
this study develops an enhanced SNACK scheme (with the pro-
posed error recovery procedure implementation), referred to as
SNACK-S, to accelerate the growth rate of the TCP window in
the slow start phase or following the fast recovery phase in order
to improve the TCP performance.

Let W denote the congestion window size, ¢ denote the mea-
sured minimal round-trip delay time, and W; be the slow start
threshold. Without loss of generality, the expected transmission

rate, A, at the TCP source can be related to the window size by

W

A= o 1)

Furthermore, let ¢ denote the transmission rate of the bottle-

neck on the path from the source to the destination (unknown

to the transport protocol). If the queue gradually accumulates at

the bottleneck, the transmission rate of the TCP source is given
by

A=pu+v ()]

where v denotes the excess transmission rate in the measured
RTT.

During a round-trip interval, the correlation between the
packet in-flight along the connection path and the window size
during a measured round-trip period is given by

3

where b denotes the observed buffer at the end of the previous
RTT (i.e., the number of packets waiting for service in the buffer
of bottleneck), and ¢ denotes the additional queue built-up at the
bottleneck contributed by this connection during this round-trip
period. The observed buffer occupancy [26] can be given by:
b= (RIT —¢t)W/RTT, where W/RT'T can be deemed as
the “actual” transmission rate of the TCP source.

In order to quickly utilize the available bandwidth at startup
phase without causing buffer overflow at the bottleneck, it is
necessary to estimate the bandwidth at the bottleneck. By com-
bining (1), (2), and (3), the “expected bottleneck bandwidt” at
the end of each RTT period can be given by

W =ut+(b+q)

“

As described in [27], to estimate the available bandwidth cor-
rectly, the TCP source must observe its own link utilization for
a time longer than that actually required to transmit the entire
packet cluster. Hence, in the startup phase, the estimated band-
width per RTT interval is given by

1
u:)\—Z/Z)\—(b—Fq)Z-

c=pp+(l—p)p

5

—p( =G+ 93) + (1= p)i ®
where i = /8,6 = s5/r,s = W/tw,andr= (W' — 1)/t gy
The parameter, p = tw /RTT, indicates the ratio of the sender’s
transmission time ty, (i.e., the time required to transmit W
packets of congestion window size) to its measured round-trip
delay RTT (as illustrated in Fig. 4). Thus, the value of p varies,
depending on the bandwidth utilization of the sender in the pre-
vious round-trip. The instantaneous source transmission rate
relative to the ACK packet arrival rate is given by 6 = s/r.
Furthermore, the “measured bandwidth”, r, is obtained by di-
viding the number of acknowledged packets by the sum of ACK
inter-arrival times. To prevent the estimated bandwidth increas-
ing too fast to overflow the buffer at the bottleneck particularly
in slow start phase, the measured bandwidth r is divided by § to
decouple temporary burst in next round.

In (5), the estimated bandwidth varies in accordance with the
bandwidth utilization of the sender in the previous round-trip
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Fig. 4. A sender view of packets sent and received during a RTT period.

(indicated by the parameter p). At the beginning of the startup
procedure, less information is gathered from the network (by
incoming ACKs), thus the estimated bandwidth is dominated by
the measured bandwidth. However, when the sender bandwidth
utilization achieves higher, the expected bandwidth dominates.

The sender then estimates the available bandwidth on the ba-
sis of the aggregated information generated along the connec-
tion path during each RTT in the startup phase. Based on the
estimated bandwidth, the size of the threshold window during
the slow start phase is given by

Wt =ot. (6)

When a packet loss event occurs, the long-interval estimated

bandwidth, ¢, is given by

L ™

o
where T is the period between two packet loss events and L
are the lengths of the packets sent during this extended period.
Based on the estimated bandwidth, when triple duplicate ACKs
are received, the values of W, and W are updated as follows:

W = max {W;, ¢t} 9)

This approach avoids the blind-halving of the TCP transmission
rate following packet loss and improves the ability of TCP to
maintain its self-clocking mechanism during the fast recovery
phase. If W; < t, the setting of W; is too conservative and
unused bandwidth is available along the path. The window size
is therefore adjusted in accordance with the estimated band-
width to increase the transmission rate to fully exploit the un-
used bandwidth.

The bandwidth estimation scheme is used to adjust the TCP
congestion window size and the slow start threshold adaptively
during the startup phase, which is either the initial slow start
phase or the startup period following the fast recovery phase.
By equipping the SNACK sender with the estimation mech-
anism provided in SNACK-S, the need for per-flow support
in the routers is avoided and the available bandwidth in large
bandwidth-delay networks can be fully exploited.

TCP source

TCP destination
@ ps /I'{\ 45 M P

@ 802.11/b/g @
—/

Fig. 5. Simple simulation model.

2 ms 10 ms

V. PERFORMACE EVALUATION

Analytical models for 802.11 MAC operations tend neither
to be sufficiently general nor sufficiently detailed to support the
evaluation and comparison of such 802.11 wireless networks.
Therefore, this study employs a simulation technique to estab-
lish the crucial performance characteristics. The numerical re-
sults presented in this study are obtained using the ns-2 network
simulator [28]. In the simulations, the ns-2 802.11 MAC layer
module is extended to generate an error probability for each re-
ceived frame and the frame may be dropped if the error module
determines that a transmission error has occurred. Since errors
are generated in both directions of the wireless channel, TCP
ACKs may also be dropped.

The sections below examine certain parameters inherent in
the 802.11 MAC layer which may affect the TCP performance.
The discussions commence with the simple DCF infrastructure-
based wireless network shown in Fig. 5, in which the link be-
tween AP and D is an 802.11 wireless link with a link capacity
of 2, 11, or 54 Mbps.

A. Window Scaling

The TCP header uses a 16-bit field to report the receiver
window size. Without the window scaling option (described in
RFC 1323 [29]), the standard maximum TCP window size is
64 Kbytes and the TCP throughput is limited by the following
expression:
window size

RIT

Consider the case of a TCP connection over an 802.11g
wireless link with a 40 ms round-trip delay time. The maxi-
mum throughput achieved by the connection is limited at 64K
bytes/40 ms ~12.8 Mbps, much lower than the 54 Mbps link
bandwidth. Hence, based on the RFC 1323, the ns-2 TCP agent
is modified in the simulation to allow arbitrarily large window
sizes.

Throughput = (10)

B. Error Model

In general, wireless connections suffer higher error rates and
are more complicated than wired connections because the bit
signals propagating through the propagation medium are ex-
posed to many more factors which potentially influence their
signal quality than signals propagating in an electrical conduc-
tor or fiber. As a result, it is difficult to generalize the results of
the wired case to the wireless domain.

It has been observed empirically that the loss characteristics
of a wireless channel are bursty as a result of various fading ef-
fects [30], [31]. Therefore, using a uniform error model] to eval-
uate wireless network protocols is unlikely to produce accurate
results. To investigate the bursty effect of wireless transmission
errors on the TCP performance, this study employs the Gilbert-
Elliot error model [32] to characterize fading in the communi-
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cation channel of 802.11 wireless links. Fig. 6 presents the state
diagram for a two-state Markov model of the Gilbert-Elliott
channel. In the good state, G, losses occur with a low proba-
bility, P, whereas in the bad state, B, the channel operates in
a fading condition and the loss probability, Pg, is higher. The
steady state probabilities of being in states G and B are given
by n¢ = Ppc/(Pep + Ppc) and ng = Pgp/(Per + Pga),
respectively. The average packet loss rate produced by the GE
channel is P = Pgng + Ppmp.

C. Analytical Upper Bound of Wireless TCP Performance

Let m denote the data length at the application layer. Without
loss of generality, a rough upper bound of the throughput for a
TCP connection over an 802.11 one-hop wireless link (i.e., only
a sender-receiver couple is active) under the basic access scheme
is given by

ThnoRTS/CTS =m / (2 (9 + DIFS + SIFS + Tack )
+Tpara, + Tpara,))

an

where TpaTa1 is the time required to transmit a MAC frame
carrying the TCP data packet, Tpar a2 is the time required to
transmit a MAC frame carrying the TCP layer ACK, and T gc x
is the time required to transmit a MAC layer ACK frame and a
physical layer header, PHY 4. Finally, 6 is the assumed average
backoff time.

If the frame exchange commences under the RTS/CTS access
method, the overheads associated with the transmission of the
RTS and CTS frames must be added to the denominator of (11).
Hence, the approximate upper bound of the TCP throughput un-
der RTS/CTS, Thrrs/cTs, is given by

Thrrs/crs = m/ (2(0 + DIFS + 3 -SIFS + Trrs + Tcrs

+Tack )+ Tpara, + Tpara,)
(12)

In Ethernet, the MTU size is 1500 bytes. Hence, the size of
maximum data which can be transmitted from the source to the
receiver (DATA ) and the size of TCP ACK from the receiver to
the source (DATA;) can be calculated respectively as: DATA;
= PHY,y,(24) + MACu4 (24) + MAC_Payload r¢p (1500)+
FCS (4) = 1552 bytes, DATA,; = PHY 4, (24) + MAC,, (24) +
MAC_ Payload r¢p (60) + FCS (4) = 112 bytes.

Table 1 summarizes the approximate upper bound of the TCP
throughput over various 802.11 wireless links. In order to sim-
plify the presentation of the proposed approach, the average
backoff time is set to (CWiin/2) - SLOT. The results reveal that
the RTS/CTS/ACK exchange adds a significant overhead to the
end-to-end throughput, particularly when TCP runs over a high-
speed wireless link.

Table 1. The analytical upper bound of TCP throughput over 802.11

networks.
Physical bitrate No RTS/CTS  RTS/CTS
802.11 2 Mbps 1.49 Mbps  1.36 Mbps
802.11b 11 Mbps 5.06 Mbps  3.88 Mbps
802.11g 54 Mbps 14.98 Mbps  7.86 Mbps

Table 2. TCP throughput over 802.11 WLAN (packet size = 1400 bytes).

Physical bitrate No RTS/CTS  RTS/CTS
802.11 2 Mbps 1.30 Mbps  1.18 Mbps
802.11b 11 Mbps 4.09 Mbps  2.77 Mbps
802.11g 54 Mbps 12.08 Mbps  6.92 Mbps

D. Effect of Channel Collisions and Transmission Errors

Bit-level error detection and correction schemes are generally
located in the physical layer and are isolated from the transport
level protocol. Hence, for the sake of simplicity, it is assumed
here that the TCP connection is susceptible to a frame error rate
(FER).

To illustrate the impact of channel collisions on the TCP per-
formance, Table 2 shows the nominal bandwidth and the TCP
goodput over a single 802.11/b/g wireless link from simula-
tions. In calculating these results, it is assumed that the TCP
packets are delivered via unicast with a random GE error model
in which Pg, Pg, Pga, and Prp are set to 0.001, 0.005, 0.96,
and 0.94, respectively. Therefore, if a packet is deemed to be
corrupted as a result of channel noise, the MAC layer will con-
tinue to retransmit the packet until the retransmission threshold
is exhausted. The goodput results in Table 2 indicate the actual
data delivered to the application. It is obvious that the high-
speed link is more seriously affected by losses. This is because
conventional TCP reduces its transmission rate drastically fol-
lowing each loss event and hence it takes far longer to reach the
nominal transmission rate supported by the higher speed links.

In a wireless link, a packet may either be corrupted as a re-
sult of channel noise or because it exhausted the retransmission
threshold and was therefore discarded by the MAC layer. In gen-
eral, discarded packets continue to be retransmitted in the MAC
layer until the retransmission threshold has been reached. In ad-
dition, with large windows, a TCP flow can suffer losses as a
result of excessive MAC layer collisions.

Fig. 7 plots the variation of the goodput with the FER, Pg. As
shown in this figure, packets transmitted on wireless channels
are frequently subject to burst errors, which cause back-to-back
losses. When the channel is in the bad state, most transmission
attempts fail. Therefore, the MAC layer discards the frame, re-
sulting in the loss of the corresponding packet in the TCP pro-
tocol. The effective throughput (goodput) of all TCP schemes
suffers in a wireless environment subject to random losses. As
shown in Fig. 7, TCP Tahoe and Reno have the poorest per-
formance since they always perform a timeout retransmission
if the packet loss cannot be recovered by fast retransmission.
However, the fast recovery algorithms employed by NewReno
and SACK reduce the probability of coarse-grain timeouts due
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to their improved response to multiple packet losses (NewReno
remains in fast recovery until all of the data outstanding have
been acknowledged), and hence the performances of these two
TCP schemes are improved slightly relative to those of Tahoe
and Reno.

In environments prone to significant losses, if a number of
successive ACK packets are dropped in the network, the remain-
ing ACK packets may be insufficient to trigger retransmission.
Furthermore, when the sender transmits packets over a fading
wireless link, the transmitted packets (particularly the retrans-
mitted packets) are more likely to be corrupted. In this situa-
tion, the only way for the sender to detect a dropped packet is to
wait until a timeout occurs. Therefore, TCP may perform less
well under SACK than under NewReno in a wireless environ-
ment. Although SACK allows the receiver to inform the sender
of the segments which have been received, the SNACK option
provides more detailed information than SACK. Therefore, in
SNACK, the sender can retransmit multiple lost packets, and
hence the occurrence of retransmission timeouts is reduced. As
a result, SNACK outperforms the other TCP flavors even in the
case of a higher MAC-layer drop probability.

E. Performance Comparison of Wired and Wireless Connec-
tions

The following paragraphs examine the TCP performance for
the case where the connections have different receiving condi-
tions. As shown in Fig. 8, the TCP connection (TCPy) between
So and Dy crosses a lossy wireless link and therefore has a
longer RTT than the TCP connection (TCP;) between S; and

Table 3. Interaction of TCP Reno with other TCP flavors
{no link-level error).

TCPo/TCP, Goodput (Mbps)
Reno/Reno 9.66/24.50
SACK/Reno 13.88/22.30
SNACK/Reno 14.42/22.31

Table 4. Interaction of TCP Reno with other TCP flavors

(with link-level error).

TCPy/TCP, Goodput (Mbps)
Reno/Reno 7.08/27.66
SACK/Reno 8.45/126.71
SNACK/Reno 9.03/26.15

D;. In the simulations, the buffers between Ry and Ry, and be-
tween R; and AP, are both set to 32K bytes.

E.1 Link Emulator - No Link-level Error

The first set of simulations investigates the interactions of two
TCP connections, one of which crosses a long latency wireless
link with no link level transmission corruption. In this set of
simulations, the first flow (TCPy) applies different TCP flavors,
while the second flow (TCP;) uses Reno. The present study
compares all the TCP flavors with Reno because Reno is cur-
rently widely deployed. As shown in Table 3, TCPy has a lower
goodput value. This is because a longer RTT slows the arrival
rate of ACKs at the sender, and hence limits the rate at which
data can be sent.

Table 3 shows that SACK and SNACK both increase the total
throughput because they allow the receiver to identify and re-
quest the immediate retransmission of corrupted packets. Both
SACK and SNACK can efficiently avoid timeouts due to their
ability to immediately retransmit lost packets. The results show
that SNACK obtains a better performance than SACK because
it has an improved response to packet loss.

E.2 Link Emulator - Link-level Error

In the following simulations, packet errors are introduced into
the wireless link using the two-state Markov error model. The
packet corruption rates, P and Pg, are set to 0.0005 and 0.001,
respectively, and Poq, Pop, PR, and Ppg are set to 0.9, 0.1,
0.85, and 0.15, respectively.

Table 4 shows that the packet error rate has a significant influ-
ence on the end-to-end performance. The results show a good-
put increases in the shorter RTT connection (i.e., TCP;) because
the shorter RTT connection is more aggressive. The longer RTT
connection (i.e., TCPy) achieves lower goodput because burst
random losses (caused by link-level errors at the wireless link)
generally lead to a reduction in the window size and thus dramat-
ically reduce the performance of TCP connections over wireless
networks (comparing to the respective ones in Table 3).

Figs. 9, 10, and 11 show the corresponding window dynamics.
In this case, Reno (TCPy) suffers multiple coarse-grain time-
outs due to the inability to react to multiple packet loss. Multi-
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ple losses within the same window may cause TCP to resort to
timeout-driven retransmissions. This results in severe window
oscillations and leads to a significant performance degradation.
Of the various schemes presented in Figs. 10 and 11, it is ap-
parent that SNACK provides the best results, i.e., its window
size is approximately 20 packets larger than that of SACK. The
superior performance arises because SNACK ailows TCP to al-
leviate the impact of wireless transmission errors and therefore
the number of unnecessary window reductions is substantially
reduced.

E.3 Comparison between SNACK and SNACK-S

It is well known that the performance of TCP flows is af-
fected by the RTT. Fig. 12 shows the TCP goodput as a func-
tion of the round-trip latency for TCP Reno, Reno-S (Reno with
the proposed bandwidth estimation mechanism), SNACK, and
SNACK-S, respectively. In this case, Pg, P, Pag, and Prp
are set to 0.001, 0.005, 0.96, and 0.94, respectively. It can be
seen that TCP becomes increasingly less efficient as the latency
increases because the TCP sources reduce their transmission
rates as the ACK packets start to return more slowly. As shown

200

: . —- TCPO: SNACK ‘
180+ : - 1C Reno

—_
P =2
=2~

60 |

Window size (Packets)
o
[=]

aofft MY

2001} ¥ ! i

80 100 120 140 160 180 200
Time (sec)

Fig. 11. Congestion window dynamic variation.

in Fig. 12, SNACK-S increases the TCP goodput to a level
higher than that of conventional TCP due to the efficiency of
its startup procedure. SNACK-S is better suited for long delay,
high BER channels, and is therefore a more appropriate choice
than SNACK for wireless environments.

Fig. 13 shows the variation of the SNACK-S goodput with
the FER, Pg. It is observed that the throughput achieved by
SNACK-S is greater than that of the other TCP connections.
The reason for this is that the proposed bandwidth estimation
algorithm starts each cycle by filling the bit pipe to its capacity,
whereas conventional TCP simply applies the default threshold
value and blindly halves the window size in the event of conges-
tion.

From the discussions above, it is clear that SNACK pro-
vides an effective scheme for quickly retransmitting lost pack-
ets, thereby eliminating timeout and long idle time periods.
Compared with TCP Reno and SACK, SNACK significantly im-
proves the TCP end-to-end performance over wireless environ-
ments. The enhanced scheme, SNACK-S, further improves the
TCP end-to-end performance based on the proposed bandwidth
estimation mechanism and allows TCP to achieve an acceptable
level of bandwidth utilization. Since the applied SNACK-based
error recovery procedure and the bandwidth estimation mech-
anism operate at the TCP level, it provides a viable incremen-
tal deployment for enhancing TCP performance without MAC
layer involvement.

VI. CONCLUSION

This study has applied an end-to-end scheme based on
SNACK to improve the performance of TCP over wireless chan-
nels. The SNACK scheme recovers from packet loss events in an
effective manner and is ideally suited for long delay, high error
probability wireless links. Therefore, it is a suitable candidate
for wireless environments.

Burst random losses in a wireless link usually result in a small
window size, and hence the number of data packets which can
be delivered per round-trip is limited. This study has developed
an enhanced SNACK scheme, designated SNACK-S, to enhance
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TCP performance in wireless links. Equipping the SNACK

sender with a bandwidth estimation mechanism, SNACK-S has
no need for per-flow support in the routers and can scale to the
available bandwidth in large bandwidth-delay networks. Hence,
SNACK-S greatly enhances the performance of the TCP over
802.11 infrastructure-based wireless networks.
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