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A Simple Model for TCP Loss Recovery Performance over
Wireless Networks

Beomjoon Kim and Jaiyong Lee

Abstract: There have been a lot of approaches to evaluate and pre-
dict transmission control protocol (TCP) performance in a numer-
ical way. Especially, under the recent advance in wireless transmis-
sion technology, the issue of TCP performance over wireless links
has come to surface. It is because TCP responds to all packet losses
by invoking congestion control and avoidance algorithms, resulting
in degraded end-to-end performance in wireless and lossy systems.
By several previous works, although it has been already proved that
overall TCP performance is largely dependent on its loss recov-
ery performance, there have been few works to try to analyze TCP
loss recovery performance with thoroughness. In this paper, there-
fore, we focus on analyzing TCP’s loss recovery performance and
have developed a simple model that facilitates to capture the TCP
sender’s behaviors during loss recovery period. Based on the de-
veloped model, we can derive the conditions that packet losses may
be recovered without retransmission timeout (RTO). Especially, we
have found that TCP Reno can retransmit three packet losses by
fast retransmits in a specific situation. In addition, we have proved
that successive three packet losses and more than four packet losses
in a window always invoke RTO easily, which is not considered or
approximated in the previous works. Through probabilistic works
with the conditions derived, the loss recovery performance of TCP
Reno can be quantified in terms of the number of packet losses in
a window.

Index Terms: Congestion control, fast retransmit probability, loss
recovery, model validation and analysis, non-congestion packet
loss, transmission control protocol (TCP).

1. INTRODUCTION

Since the specification of transmission control protocol (TCP)
was released [1], implementations of TCP have been enhanced
with several mechanisms, such as congestion control [2], [3].
For reliable transmission, TCP congestion control provides a
function to detect and recover packet losses using two basic
algorithms such as fast retransmit and fast recovery, which is
called TCP loss recovery in simple. TCP loss recovery perfor-
mance is very important because it affects overall TCP perfor-
mance such as end-to-end throughput. It is also the reason for
continuous enhancements to the fast recovery algorithm result-
ing in subsequent TCP implementations such as TCP Tahoe [4],
Reno 5], NewReno [6], [7], and selective acknowledgement
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(SACK) option [8], [9].

Recently, with the advance in wireless technology, TCP per-
formance is gaining more importance. Basically, TCP is tuned
to perform well in traditional networks where packet losses oc-
cur mostly because of congestion [4]. However, networks with
wireless and other lossy links also suffer from significant losses
due to bit errors and handovers. TCP responds to all packet
losses by invoking congestion control and avoidance algorithms,
resulting in degraded end-to-end performance in wireless and
lossy systems [10].

There have been several efforts [11]-[19] to analyze TCP per-
formance for non-congestion packet losses. However, although
it has already been proven that the performance of TCP is mainly
affected by the loss recovery performance [11], the detailed loss
recovery behaviors of TCP are not considered or approximated
in these works. In [13], although the authors show the effect
of packet losses due to buffer overflow at a bottleneck node in
terms of bandwidth-delay products (BDP), they do not consider
the loss recovery features such as fast retransmit and fast re-
covery. In [14] and [15], the authors provide a complete ana-
lytical description of various TCP versions when packet is lost
randomly and in series, respectively. In analytic modeling pro-
cesses of these works, they assume that over three packet losses
in a window always invoke RTO and the congestion window
(cwnd) [2], [3] is always decreased by half regardless of the
number of packets retransmitted. Actually, three packet losses
can be recovered by retransmissions in a specific case as will
be shown and cwnd with which the sender starts in congestion
avoidance after successful fast recovery depends on the number
of packet losses recovered. In [17], the authors provide a simple
closed-form analysis of TCP throughput in terms of packet loss
probability. Only the window evolution in congestion avoidance
is considered and it is assumed that all packets transmitted after
the first lost packet in a window are lost. The assumption may
be true for a router using a drop-tail queue, but cannot be applied
to wireless environments.

Consequently, the previous works addressed above have a fo-
cus on approximating overall TCP performance such as through-
put rather than accurate modeling of loss recovery behaviors of
TCP, which provides the departure point of our work. It may
be because the loss recovery behaviors of TCP are comprised
of somewhat complex procedures and produce a lot of states in
connection with various factors such as the number of packet
losses, window size, the position of packet losses, and so on.
Therefore, in this paper, we have developed a simple model
which facilitates to model loss recovery behaviors of TCP. We
consider TCP Reno implementation, the most prevalent version
of TCP, operating in wireless environments where packets are
lost at random (i.e., i.i.d.) and correlated (i.e., bursty). Based on
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the developed model, we can derive the accurate conditions for
successful loss recovery of TCP Reno in terms of the number
of packet losses in a window and the window size. Under the
condition derived, the loss recovery performance of TCP can be
quantified by the fast retransmit probability. The difficulty to ob-
tain the complete distribution of the congestion window makes
us deploy the fact that the evolution of TCP congestion win-
dow is of a cyclical structure. It can be analyzed with a Markov
chain as in the related references [14], [15], [17]. Thus, we can
compute the stationary distribution of the window process nu-
merically.

The remainder of the paper is organized as follows. In Section
I, we briefly describe the data transmission and loss recovery of
TCP Reno. In Sections III and IV, we describe our model and
derive the conditions for fast retransmit. We present the derived
conditions probabilistically in Section V. Section VI contains
the numerical results and their discussion. Finally, some con-
clusions are summarized in Section VIIL

II. DESCRIPTION OF TCP RENO

TCP Reno implementation has modified the loss recovery to
include fast recovery [2], [3], [5]. The fast recovery algorithm
enables the TCP connection to maintain so-called self-clocked
state after fast retransmit, thereby, the sender can continue to
transmit packets in congestion avoidance if all packet losses in
a window may be recovered by fast retransmits. In this section,
we illustrate the operation of TCP Reno from the aspect of the
sender, receiver, and loss recovery operation. The readers can
refer to [11], [12], and [13] for details of the TCP Reno.

A. The Sender

After a connection is established, a sender initializes cwnd to
one packet size and starts to transmit packets in slow start. For
simplicity, all packets are assumed to have the same size. In
slow start, every normal (i.e., non-duplicate) acknowledgement
(ACK) makes cwnd to increase by one. When cwnd is equal
to slow-start threshold (ssthresh) [2], [3], congestion avoidance
begins. The initial value of ssthresh is determined at the con-
nection setup phase. In congestion avoidance, cwnd increases
by one divided by cwnd. In order to explain the evolution of
cwnd, we define two parameters, the current cwnd by W and
ssthresh by Wy,. We consider the source has infinite packets to
send so that the congestion window is always fully incremented.
Thus, we have

|

Every time a normal ACK is received, the congestion window
slides not to include the packets that have been already transmit-
ted. In this process, the sender is allowed to transmit the packets
that are newly included in the congestion window.

W+1,
W+1/|W],

if W < Wy
otherwise.

M

B. The Receiver

The receiver delivers an ACK when a good packet is received.
We do not consider the effect of ‘delayed acknowledgement’
{20] so that the number of packets received is always equal to

the number of ACKs generated. As the size of an ACK packet
is considerably small compared to a data packet size, an ACK
packet is assumed not to be lost. Since the receiver has a finite
buffer, it advertised a maximum window size Wy, at the con-
nection setup time. The size of the congestion window cannot
be larger than Wiay.!

Actual TCP uses a sequence number expressed with the unit
of bytes to discriminate the boundary between the packets.
However, in this paper, for an easier description, each packet
is assumed to have an assigned number (i.e., packet 1, packet
2) instead of the sequence number. An ACK from the receiver
always delivers the next expected packet number. An ACK for
packet n acknowledges all data packets up to and including the
packet (n — 1), which is known as the cumulative strategy of
TCP ACK. We use the term “An ACK for packet B by packet
A” to mean that the sender transmits packet A, and the receiver
delivers an ACK whose next expected packet number is B ac-
cording to its reception of the packet A.

If a packet is lost, the receiver delivers ACKs with the same
next expected packet number every time it receives a good
packet the sender transmits after the lost packet. These are called
duplicate ACKs. Suppose that the sender transmits packets 1—
8 and packet 5 is lost. The receiver returns the first ACK for
packet 5 on receiving packet 4. When packets 6-8 are received,
the receiver delivers three more ACKs for packet 5, since it has
not received packet 5 yet; in this case, the number of duplicate
ACKs is three.

C. The Loss Recovery of TCP Reno

There are two different ways for TCP Reno to recover a lost
packet; one is by RTO and the other one is by fast retransmit and
fast recovery. To trigger a fast retransmit, the sender should re-
ceive at least K duplicate ACKSs for a lost packet (X is typically
3). Suppose that a packet is lost and the sender receives the Kth
duplicate ACK for the lost packet at t = ¢5. The lost packet is
retransmitted instantly by fast retransmit without waiting RTO.
After fast retransmit of the packet, cwnd and ssthresh are set as
follows:

W(td) = {@J + K and Wi (td) = LK;@J )

The addition of K reflects the fact that K' more packets have
successfully left the network.

During fast recovery that starts right after the fast retransmis-
sion, the sender increases the window by one every time another
duplicate ACK arrives. This is also based on the fact that a dupli-
cate ACK means that at least a packet is not lost but transmitted
successfully. If the increased window includes a new packet, the
sender is allowed to transmit it. If the fast retransmitted packet
is not lost, the sender receives a normal ACK which makes the
sender exit fast recovery. The sender continues to transmit a
packet in congestion avoidance with the congestion window that
is equal to Wy, determined by (2).

1 According to buffer size in a receiver, the value of Winax may vary during a
TCP connection. Also, we assume that Wi,ax keeps a constant value during a
connection.

2The relation between A and Bis B = A + 1.
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When multiple packets are lost in a window, several fast re-
transmits and fast recoveries may be repeated. Suppose that two
packets are lost in a window. When the K'th duplicate ACK for
the first lost packet is received, the sender fast retransmits it. If
it is successful, the sender receives the first ACK for the sec-
ond lost packet3 and enters congestion avoidance. At this time,
cwnd is half as much as that before the first fast retransmit. If
K more duplicate ACKs for the second lost packet are received,
if possible, it is retransmitted by the second fast retransmit and
the second fast recovery follows. At this time, cwnd is halved
again. After receiving a normal ACK by the second retransmit-
ted packet, the sender enters congestion avoidance with cwnd
whose size is quarter of that before the first fast retransmit. Sup-
pose n lost packets in a window can be recovered by n fast re-
transmits. If £; is the time just before the first fast retransmit and
nth lost packet is fast retransmitted at ¢, the relation between
W (t1) and W (t,) is given by

W (t1)

W(ts) = [TJ . 3)

By (3), the main reason can be explained that the performance
of TCP Reno is poor when multiple packets are lost.* Even if
all packet losses may be recovered by fast retransmits, cwnd has
already decreased considerably and it takes long time to restore
the size before packet losses. Note that cwnd increases at most
by one every round-trip time (RTT) in congestion avoidance.
Thus, multiple packet losses prevent TCP Reno from utilizing
the advantage of fast recovery that it may not slow start after
RTO if fast retransmit succeeds. It is the reason that the fast
recovery algorithm of TCP Reno is called ‘conservative’.

III. MODELING TCP RENO

A. Cyclic Window Evolution

We model the congestion window evolution of TCP Reno in
terms of cycles. A cycle means a transmission period of good
packets and consists of several rounds defined in [17]. When
cwnd is equal to W packet, after the sender has transmitted all
packets within cwnd, no other packet can be transmitted un-
til ACKs by W packets arrive. If RTT is always longer than
the transmission time of the packets within a window, no ACK
will be received till the sender completes the transmission of W
packets. In such a case, cwnd maintains a constant value for a
while. This time duration is called a round.>

In a cycle, cwnd increases per every RTT till a packet loss
occurs. After detecting a packet loss, the current cycle ends and

3This type of ACK is called ‘partial ACK’ in general. About partial ACK, the
readers can refer to [5] and [6].

4For multiple packet losses, it is known that TCP Tahoe, an earlier TCP imple-
mentation before TCP Reno, outperforms TCP Reno. It is because TCP Tahoe
has no fast recovery phase. When multiple packets are lost in a window, the
sender of TCP Tahoe recover only the first Jost packet by fast retransmit and
other lost packets are retransmitted in slow start after the fast retransmission.
Thus, the packets that have already been successfully delivered may be retrans-
mitted falsely [11]. However, it can be rather efficient to avoid RTO, even if it
should restart in slow start.

5Note that the round in this paper is similar to ‘mini-cycle’ defined in [12] and
‘epoch’ in [13].
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Fig. 1. Cyclic evolution model of the congestion window. If the lost

packet in the current cycle can be recovered by fast retransmit, the
next cycle starts in congestion avoidance (see the (i + 1)th cycle).
Otherwise, the next cycle should restart in slow start after RTO (see
the (i + 2)th cycle).

is followed by loss recovery phase. Whether the next cycle starts
in slow start or congestion avoidance is dependent on the result
of loss recovery (see Fig. 1).

B. The Loss Window; §2

In a cycle, suppose that the first lost packet belongs to the
packets that are transmitted in the kth round. The ACKs by good
packets transmitted in the kth round are received in the (k +
1)th round. Let [, be the nth lost packet in a cycle and W (k)
be cwnd at kth round. When {3 is mth packet among W (k)
packets, a loss window, €2, is the congestion window when all
normal ACKs by (m — 1) packets are received. If (m —1) ACKs
do not switch the sender’s state from slow start to congestion
avoidance, the relation between 2 and W (k) is given by

o

Note that cwnd in slow start increases by one for every nor-

slow start
congestion avoidance.

W(k) + (m — 1),

W (k), @

mal ACK while, in congestion avoidance, it increases by one
after all ACKs by packets the sender has transmitted in the pre-
vious round are received. Consequently, the first packet that §2
includes is always the first lost packet. If we denote the lower
(i.e., left) boundary of a by L[a], then we have

L[Q] = Lily]. )

C. The Condition for Successful Fast Retransmit

When r packets are lost for within €2 of u packets, we denote
the number of packets that are not lost or transmitted newly in
the kth round of loss recovery period by ®; e.g., ®, is always
equal to v — n. For A > 2, ®, is equal to the number of packets
that are transmitted by the slide and the inflation of the usable
window during fast recovery. In order to recover n packet losses
by 7 fast retransmits, each value of ®,, ®;, ®3,---, ®,, should
be greater than K. However, the condition ®,, > K includes
the conditions that each value of ®;, ®o, .-, ®,,_1 should be
greater than K. Therefore, the condition that n lost packets in
) may be recovered by n fast retransmits is simplified by

¢, > K. ©)



238 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 6, NO. 3, SEPTEMBER 2004

The detailed derivations of ®,, are done in Section IV.

IV. DERIVATIONS OF ¢,

A. One Packet Loss (n = 1)

For @ = wu, ®; isiequal to the number of well-transmitted
packets out of u packets, namely, v — 1. These ®; packets are
going to generate duplicate ACKs for /;. Thus, we have

®; =u-—1 Q)

B. Two Packet Losses (n = 2)

After the fast retransmit of [;, ®; new packets included by
the inflation of the window are transmitted during the first fast
recovery period. It means that the number of duplicate ACKs
to be received for [y is equal to ®,. Considering that duplicate
ACKs for [; inflates window by u — 2 and wu packets are still
outstanding, ® is given by

Oy = |u/2|+ (u—2) —u=|u/2] -2 (8)

If ®; > K, 5 can be recovered by fast retransmit.

There can be an exception when Iy is the last packet in £,
When the sender receives the first ACK for [, by fast retrans-
mitted [;, the window slides till its lower boundary corresponds
to l3. In such a case, if [u/2] — 1 = K, I, can be recovered
by fast retransmit. However, the probability for this case is too
low to be considered. For ®; > K, even if some packets are
lost among ®, packets, I, can be fast retransmitted if at least
K packets are not lost. However, if these packet losses can-
not be recovered by fast retransmit, RTO cannot be avoided in
almost all cases. In practice, it is almost impossible for TCP
Reno to recover packet losses occurred during loss recovery by
fast retransmit due to lack of duplicate ACKSs in the next cycle.
Therefore, we assume that if a loss occurs on the new packets
transmitted during fast recovery, RTO always takes place.

C. Three Packet Losses (n = 3)

Fig. 2 shows the loss recovery behavior of TCP Reno for three
lost packets in 2. Each round is explained as follows:
« Loss recovery starts at round 7.
«» The last duplicate ACK for [, is received at round (% + 1).
« The first ACK for [5 is received by retransmitted /; at round
(i +1.5).
o The last duplicate ACK for l5 is received at round (i + 2).
When the initial loss window is denoted by €2(z) and R[a] de-
notes the right boundary of a, each boundary value is set to
have L[Q(#)] = 0, R[Q({)] = w, R[ls] = 3, Rlls] = k,
R[Q(i+1)] =z, R[Q(i+1.5)] =y, and R[Q(i + 2)] = =. For
every j and k thatrespects 2 < j <u—landj+1 <k <wuin
respect, the value of z, y, and z are given by

z = |u/2]+(u—-3)
y = -1+ |uw/2 )
2 = (=1)+ (u/4] + ®s.

Q=u

round i L | L] - | L 2,

round (i+1)
round (i+1.5)

round (i+2)

Fig. 2. Model of window behaviors of TCP Reno when three packets are
lost in a loss window.

If y > x atround (¢ + 1.5), y — = packets are transmitted.
Since I, has not been retransmitted yet, they may generate du-
plicate ACKs for l. Considering these two cases, ®3 is given
by

®; = 2z-—max(z,y)
_ {(J'—1>+Lu/4J—u, 2<j<u—2
lu/4] -3, j=u—1.

(10)
Unlike ®; and ®,, ®3 has relation with the position of g
as well as the value of £2. When j has a maximum value, z
increases most by (9). It is because window slides most when
J = u — 1. Therefore, the minimum value of {2 for recovery
of three lost packets without RTO can be obtained by |u/4] —
3 = K. Its value is 24 if K has a typical value, three. For
2 < j < u — 2, the condition for /3 to be recovered is given by
-1+ |u/4] —~u> K. (11)
It means that I3 can be recovered by fast retransmit if there are
at least u — |u/4] + (K — 1) between [; and .

D. Four Packet Losses (n = 4)

Fig. 3 shows the loss recovery behavior of TCP Reno for four
lost packets in a window to be recovered. Each round is ex-
plained as follows:

« Loss recovery starts at round <.

» The last duplicate ACK for [; is received at round (¢ + 1).

« The last duplicate ACK for I5 is received at round (i + 2).

» The first ACK for I3 is received by retransmitted o at round

(i +2.5).

« The last duplicate ACK for /3 is received at round (% + 3).

Each boundary value is set to have L[Q(%)] = 0, R[Q2(?)] = u,
Rllo] = 4, R[ls} = k, R[l4) = I, R[QE + 2)] = =z, R[Q3E +
2.5)] = y, and R[Q(i + 3)] = z. The values of z, y, and z are
given by,

z = (j—l)>+LLu§4JJ+¢2

y = (k—1)+|u/4

= (k—1)+ [u/8] + ®s (12)
o

4 z — max(z,y).

Asz—y = (j —k)+ & > 0, the output of max(z,y) is
always x. In practice, ®4 can be greater than zero in no case. In
order to prove it, let <i>4 be the maximum value of ®,4, then we
have
(13)

®4 = Zmax — Tmin,
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Q=u
[}
round i A N L N A 2 &
. 3
round (i+1) le————» @
round (i+2) 4
round (i+2.5)
round (i+3) |
01 J k l u Xy Z

Fig. 3. Model of window behaviors of TCP Reno when four packets are
lost in a loss window.

where i, is the minimum value of x and 2y, is the maximum
value of z. When the distance between /o and I3 is longest,
that is, the window slides most by receiving an ACK for I3 by
retransmitted [», z has the maximum value. Thus, we have

Zmax < — Z|j=jm;n,k=u—1

Tmin = T|jmjmin (14)
= (Jmin — 1) + [u/4] + ®2
= (Jmin — 1) + (/2] + [u/4] — 4,

where 7min is the minimum value of j that satisfies (11). From
(14), we have

®, =

Zmax — Lmin

2= (lu/2] = [u/8)).
Considering the minimum value for I3 to be recovered by fast
retransmit is given by |u/4] — 4 = K, ¢4 can be positive in no
case.

15)

V. PROBABILISTIC ANALYSIS

A. The Packet Loss Models

We consider that the characteristic of packet loss is random
and correlated. For random packet loss, each packet is lost with
probability p and losses are independent as in [14] and [17].

For correlated packet losses, a first-order Markov chain is
adopted as in [15], [16], and [18]. This model is commonly
adopted for the channel with multi-path fading in a wireless en-
vironment. The transition probability matrix, Q., of the Markov
chain is given by

Q. = ( PBB PBG ) ' (16)

beB PcaG

It is assumed that the chain is embedded at the beginnings of
packet transmissions. Whether the current packet may be lost or
not depends on the transmission result of the previous packet.

The channel has two states that are the ‘good’ state and the
‘bad’ state. The packet is lost with probability 1 while in the
bad state. We define pp as the conditional probability that the
present packet is transmitted successfully given that the previous
packet is lost. The other entries in the matrix can be defined
similarly. If we let the values of pip and ppg to be & and 3,
respectively, the steady-state probabilities that the channel is in
the good state (I1;) and the bad state (Il ) are given by

Jé] @
d IIp = .
a+ﬁan B a—l—IB

I = a7
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Table 1. Parameters o and g at different values of [I1g and f,;7".

f] O [F@AB)] o | B8 [ 1/B
0.01 103 29.99 | 0.00067 | 0.67129 1.49
102 19.98 | 0.00249 | 0.24610 4.06
1071 9.77 0.00815 | 0.07337 | 13.63
5.10°1 1.59 0.02090 | 0.02090 | 47.83
0.05 103 2099 | 0.00098 | 0.97983 | 1.0206
10~2 19.98 | 0.00837 | 0.82883 | 1.2066
101 9.77 0.03959 | 0.35631 | 2.8066
5.10°1 1.59 0.10408 | 0.10408 9.61
0.1 10-3 29.99 | 0.00100 | 0.99459 | 1.0054
102 19.98 | 0.00958 | 0.94795 | 1.0549
101 9.77 0.07006 | 0.63051 | 1.5860
5.1071 1.59 0.20534 | 0.20534 4.87

Further, the average duration of the bad state is given by 1/8
while the average duration of the good state is given by 1/a.
The unit of the duration is the number of packets because we
assume that the state transits per every transmission time of a
packet.

B. The Parameters for Correlated Packet Loss Model

In order to determine the parameters for correlated packet loss
model of (16), we consider a wireless fading channel charac-
terized by Rayleigh distribution. We assume that the TCP/IP
stack is directly placed at the base station of wireless broad-
band (WiBro) that is going to be standardized as a specification
of wireless MAN by telecommunications technology associa-
tion (TTA), which is a standard developing organization (SDO)
of Korea [21]. In brief, WiBro is considered to operate at the
frequency of 2.3 GHz with frequency reuse factor of 1 and fre-
quency efficiency of 6 and 2 (bps/Hz/Cell) in uplink and down-
link, respectively.

In order to apply the Markov model at the TCP level, a wire-
less link of 5 Mbps and a constant packet size of 1,400 (bytes)
are assumed in our numerical evaluations. The average packet
loss probability (ITg) depends on the physical characterization
of the channel, usually expressed in terms of the fading margin
(F). By choosing different values of the normalized Doppler
bandwidth (f4T), we can establish fading channel models with
different degrees of correlation in the fading process. When f;T
is small, the fading process is very correlated, which means long
bursts of packet losses; on the other hand, for a large value of
faT', packet losses are almost dispersed similar to for random
packet loss model. For different values of f;7(= 0.01,0.05,
and 0.1), Table 1 shows the parameters of «, 3, and the average
length of a packet loss burst (1/3). For detailed procedures of
determining the parameters, [18] can be referred to.

C. The Fast Retransmit Probability

As described earlier, fast retransmit is the only mean for TCP
Reno to recover a packet loss without RTO. Therefore, we have
termed fast retransmit probability to measure the capability of
TCP Reno in handling packet losses by retransmission.
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Simply, the fast retransmit probability is defined as the ratio
of the number of packet losses retransmitted to the total num-
ber of packet losses, and indicates how many packet losses may
be recovered by fast retransmit. In order to average the fast re-
transmit probability, it is needed to normalize the fast retransmit
probability derived in terms of a loss window size (u) to the sta-
tionary distribution of u. In Section V-D, we discuss about how
we can obtain the distribution of u in steady-state.

If we denote the fast retransmit probability of TCP Reno by
Rpg, then we have

Winax
Re=Y_ 3" RP(w)mn(u), (18)

u=1

where 7, (w) is the probability when € is equal to w in steady-
state, and Rgl) (w) is given by

Rgl) (u) = P{(n — 1)packets losses in(u — 1)packets}
x P{no packet loss during loss recovery}.
(19
For random packet loss, Rgl) (u) in terms of n can be written as
follows:®

RPw) = (1-p*(1-p)
= (1-p*
RPw) = (*7Yp(1 -p)® 21 —-p)*(1-p)?
= (u-1)p(l —p)ute:
R (u) (/=B p2 (1 ~ p)®=3) (1 - p)3(1 ~ p)P2ts

- (Lu/é —K)p2(1 ~ p)utPates,

0
Finally, the total fast retransmit probability for random packet
loss is given by

1 2 3
R (u) + R (u) + R (u)

1+ (u—1)p(l — p)®2
o Lot ppeeres )

RR(U) =

21)

For the correlated packet loss model, the sequence of packets
should be considered to calculate RE{,’) (u). Forn = 1, the chan-
nel should transit to good state after a packet is lost and stay in
the good state till the transmission of u packets that include the
retransmitted packet are completed. For n = 2, let Rg)(u)su
be the probability when two lost packets are successive, and
Rg) (u),,, be the probability when two lost packets are not suc-
cessive. Then, Rg) (u) is sum of Rg) (u),, and Rg) (u),,,- For
n = 3, I and l3 may be successive or not for ji, < j <u—2
while they are always successive for 7 = w — 1 by the given
condition. Consequently, Rgl) (w) for correlated packet loss is

6The derivation of Rgl) () is based on the conditions presented in Section
V. Detailed procedures are not included in this paper due to its insignificance.
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given by
Rg) u) = B(l—a)®
RP(w) = B —p)1—a)t?2
+(u;2)a182(1 _ a)u+<1>2—3
= Bl —a)***273{(1 - a)(1 - f) + (u—2)af}

af?(l-B)(1—a)P+®e=2,  j=u-—1
R = { af’(1—a)tees

X{Ngw(1 — @) + Nps(1 = B)}, else,

(22)

where N, is the number of cases that [, and I3 are successive
and N, is the number of cases that they are not. The values of
N, and N, are determined as follows:

Nsu =
an =

u_(jmin_l)_2

(u_(jr;in_l)) — (Ngy — 1). (23)

D. Markov Process

As mentioned earlier, the window evolution of TCP can be
analyzed by adopting a Markov chain. The stationary distribu-
tion of Markov chain {{2;} can be obtained numerically if the
exact transition probabilities can be determined. We follow the
procedures in [14] and [15] to get the transition probabilities ex-
cept that the congestion window size after loss recovery does
not always decrease to |u/2]. The relation between the number
of lost packets and the window size in the next cycle is defined
by (3).

When RTO occurs, Wy, of the next cycle can be inferred as
follows. For 2 = v , suppose two packets among packets are
lost and RTO occurs. If u > K + 2, at least the first lost packet
may be recovered by fast retransmit. In this case, we can sure
that RTO is invoked by the second lost packet. Therefore, Wy,
in the next cycle is set to |u/2|. Depending on the size of §2 and
the number of lost packets, Wy, in the next cycle may be one of
lu/2], |u/4], and |u/8].

For correlated packet loss model, it is impossible to know
the state of the channel during RTO in which no packet can be
transmitted. However, if the first packet is not lost in the next
cycle, it assures that the channel is in the good state. That is,
regardless of the number of consecutive RTOs, it can be sure
that the state of the channel when the next cycle starts is always
good. Therefore, we consider the process {Qi} over the state
space {2,3,4, -+, Wnax }. Note that the number of successive
RTOs does not affect the evolution of the congestion window
process.

VI. NUMERICAL RESULTS

In this section, we show the fast retransmit probability defined
by (18) for random and correlated packet loss. The z-axis of
each graph indicates packet loss probability, which corresponds
to p for random packet loss and to I g for correlated packet loss.
We set K to have the value of three in all cases.

Figs. 4-6 show the fast retransmit probability for different
values of Wy.x of 8, 32, and 128 when packet losses are ran-
dom and correlated for f;7° = 0.01,0.05, and 0.1. As packet
loss probability increases, we can see that the fast retransmit
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Fig. 4. Fast retransmit probability of TCP Reno for random and corre-
lated packet loss (Wnax = 8).
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Fig. 5. Fast retransmit probability of TCP Reno for random and corre-
lated packet loss (Wmax = 32).

probability of all cases decreases as expected. It means that the
fast retransmit cannot be triggered well due to lack of duplicate
ACKs.

It is very important observation that as f37 decreases, i.e., as
average length of a packet error burst increases, the fast retrans-
mit performance degrades seriously. As addressed in Section IV,
more than three successive packet losses can be recovered with-
out RTO in no case. Therefore, for a value of 3 decreased below
1/3, almost every packet loss event means invocation of RTO.
On the other hand, when packet losses are random (or when av-
erage length or a packet error burst is close to 1 for f;7" = 0.05
and 0.1), most packet loss events correspond to a single packet
loss case so that the fast retransmit probability maintains rather
high values compared to the case when f;T" = 0.01. Note that a
single packet loss in €2 can be recovered by fast retransmit only
if the value of (2 is greater than or equal to 4.
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Fig. 6. Fast retransmit probability of TCP Reno for random and corre-
lated packet 10ss (Wmax = 128).

Recalling the conditions for successful fast recovery of TCP
Reno, the value of W, should be greater than or equal to 10
to recover two packet losses by two fast retransmits. Therefore,
when Wy is equal to 8, two or more packet losses always
invoke RTO;i.e., Rg) = R(RB) =0, R = Rg). For the reason,
it can be seen that the fast recovery probability for f; T = 0.01
and Wy,,x = 8 is much smaller than the probability for fyT =
0.01 and W, = 32 or 128.

Except in the case for f;T = 0.01 and Wy, = 8, the incre-
ment of W, makes no significant difference to the fast recov-
ery probability. As mentioned earlier, it is because the number
of packet losses in window is one in most cases. As packet loss
probability increases, two or more packets tend to be lost in a
window. Howeyver, at the same time, the sender cannot keep
cwnd large enough so that, even if Wiy, is set to a large value,
the benefit obtained from the large value of Wy, is insignifi-
cant. According to the conditions derived in Sections IV-B and
IV-C, if K has a typical value of 3,  should be greater than
or equal to 10 and 24 to retransmit two and three packet losses,
respectively. Consequently, we can infer that overall R g is dom-
inated by Rg) in these cases.

In order to investigate the effect of window size on the fast re-
transmit probability, the average window size compared for dif-
ferent values of Wyay, 1, and fg7 in Figs. 7-9. As mentioned
in Section II-C, the window size of TCP Reno is affected by the
number of packet losses recovered by fast retransmit. To reflect
the effect, we calculate each average window size for three dif-
ferent values of n (= 1,2, and 3) because over 4 packet losses
in a window always invoke RTO. The average window size is
defined by

Wma.x
Z wr(w) forn=1, 2, 3,

w=1

W, = (24)

where 7, (w) means the probability that 2 = u when {2 may de-
crease by (1/2)™; i.e., W2 means the stationary distribution of
() that can be decreased by 1/2 and 1/4 after successful loss re-
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Fig. 7. Average window size for a single packet loss (W1) when packet
losses are random (W, = 8,32, and 128).
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Fig. 8. Average window size for different values of n (W1, Wa, and Ws)
when f;T = 0.01 (Wiax = 128).

covery (the implication of 7 is discussed in the later presentation
of Fig. 8 in detail).

Fig. 7 corresponds to the case for a single packet loss (W7)
when packet losses are random, and shows the average window
size for different values of Wi,.,. It can be seen that as p in-
creases, two graphs for Wy, = 32 and 128 overlap perfectly
for p exceeding 1072, and all three graphs overlap for p exceed-
ing 10~!. That is, a large Wiy has no meaning for a packet
loss probability exceeding a certain value, which explains the in-
significance of Wy,a to the fast retransmit probability as shown
in Fig. 6.

Fig. 8 provides the comparison of average window size for
different values of n when fy7" = 0.01 and Wi, = 128.

As n increases, the corresponding window size decreases,
which can be expected by (3). Therefore, the consideration of
two or three successful retransmissions has an effect of lower-
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Fig. 9. Average window size for different types of packet loss models
(Wmax = 32).

ing the average window size. The difference between Rg) and

Rg’) is much smaller than the difference between RS) and Rg).
It means that the frequency of decreasing cwnd by 1/8 corre-
sponding to three successful retransmissions is much less than
that of decreasing cwnd by 1/4.

We also consider the effect of correlated packet losses on the
average window size in Fig. 9.

It is interesting to observe that the longer length of a packet
error burst corresponds to the larger size of window size. It can
be explained by the fact that, for a certain value of packet loss
rate, as average length of a packet error burst increases, the av-
erage number of invocations of loss recovery phase rather de-
creases, even if it is not successful. That is, the sender decreases
cwnd less frequently for the grouped packet losses than for the
scattered packet losses. Although the larger value of n has an
effect to make the window size smaller as can be seen in Fig. 8,
the effect of the grouping overweighs the effect. In addition, the
effect of the grouped packet losses explains the reason for the
reversion of fast retransmit probability for packet loss probabil-
ity exceeding 10~ shown in Figs. 4-6. When packet losses are
grouped, even if packet loss probability is of such a large value,
the sender keeps cwnd large compared to the values for scattered
packet losses so that it is able to have more chances to recover
packet losses without RTO.”

For more detailed investigation of the loss recovery perfor-
mance of TCP Reno, we show the fast retransmit probability
isolated in terms of n in Figs. 10-13. We consider the case
when Wi,.y 1s equal to 32 and 128 because both Rg) and Rg)
are equal to zero when Wy, is equal to 8.

Figs. 10 and 11 show the fast retransmit probability for two
packet losses, Rg), when Wiax is equal to 32 and 128 in re-
spect. Each line in both figures has the same characteristic that it
rather increases as packet loss probability increases until packet

7Except the results shown in Figs. 7-9, the graphs of the average window size
have almost similar characteristics for different values of Winax, n, and f3T so
that they are not included in this paper.
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Fig. 11. Fast recovery probability of TCP Reno for two packet losses

(Rg)) and different types of packet losses (W ax = 128).

loss recovery probability approaches to a certain value. Another
observation is that the fast retransmit probability for most cor-
related packet losses (when fy7' = 0.01) is the highest of the
four.

We can explain these two observations based on the frequency
of the event that two packet losses are included in a window. As
mentioned when we discuss on the result in Fig. 9, for a given
packet loss probability, as the larger number of packet losses
are grouped, more packet losses are likely to be included in a
window. For example, when packet losses are random (or scat-
tered with a large value of f;T), the likelihood of two packet
losses in a window is comparatively smaller than when packet
losses are correlated. When packet losses are correlated, as
packet loss probability increases, f41' also increases. There-
fore, when packet loss probability is low, the results for corre-
lated packet losses have similar characteristic to the results when
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Fig. 12. Fast recovery probability of TCP Reno for three packet losses
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Fig. 13. Fast recovery probability of TCP Reno for three packet losses
(RS)) and different types of packet losses (Wmax = 128).

packet losses are random. For a large packet loss probability,
even if two packet losses are included in a window, they cannot
be recovered by fast retransmit due to lack of duplicate ACKs.

The shape of these two figures seems almost similar. We
have already discussed about the reason for the insignificance
of Wiax to the fast retransmit probability. Note that the needed
window size for two packet losses is just 10, which is the only
matter of concern to the fast retransmit probability.

In Figs. 12 and 13, we also show the fast recovery probability
of TCP Reno for three packet losses (Rg)) when Wi« 1s equal
to 32 and 128 in respect. Similarly as the results for n = 2
shown in Figs. 10 and 11, the fast retransmit probability when
faI = 0.01 is the highest throughout packet loss probability,
which is also related to the frequency of the event that three
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packet losses may be included in a window.

It can be seen that a large value of Wy, benefits the fast
recovery probability as shown in Fig. 13. It is because success-
ful recovery of three packet losses requires a considerably large
window size of 24. However, overall value of R( ) is extremely
small that TCP Reno cannot be considered that it can recover
three packet losses in a window. It reflects that the condition
for three lost packets to be recovered by fast retransmits is very
strict; it is related with the position of the second lost packet as
well as the window size.

VII. CONCLUSION

In this paper, we have proposed a simple model which facili-
tates to capture and evaluate the loss recovery behaviors of TCP.
On the basis of the developed model, the loss recovery perfor-
mance of TCP Reno can be evaluated in a numerical way.

Our contribution can be summarized as following two facts:
e Adopting the proposed model, the rather complex behaviors

of TCP loss recovery can be analyzed in a simple way.
e We have quantified the effect of correlated packet losses on
the loss recovery performance of TCP.
About the first contribution, the accurate conditions for success-
ful fast retransmit can be derived in terms of the number of
packet losses in a window. Under the conditions, we can have
revealed that three packets are recovered by three successive fast
retransmits under very specific cases, and proved that over four
packet losses in a window always invoke RTQO as well. There-
fore, we need not assume that more than three packet losses may
always invoke RTO as in most previous works any more.

We have considered a practical wireless channel where packet
losses may be correlated due to fading, and shown that even
if the average packet loss probability is very low, the burst of
the successive packet losses can degrade TCP performance seri-
ously, which is the second contribution of this paper.
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