• Title/Summary/Keyword: TCAA

Search Result 21, Processing Time 0.024 seconds

A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water (음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구)

  • Lee, Kang Jin;Hong, Jee Eun;Pyo, Heesoo;Park, Song-Ja;Yoo, Je Kang;Lee, Dae Woon
    • Analytical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.249-260
    • /
    • 2003
  • The disinfection of drinking water to control microbial contaminants results in the formation of secondary chemical contaminants, DBPs (disinfection by-products). It was studied the formation pattern of DBPs in drinking raw water after hypochlorite, chlorine disinfectant, was added in this study. It was determined TOC (total organic carbon), residual chlorine, turbidity and DBPs in raw water from Han-river during 1~14 days. Total DBPs was $101.3ng/m{\ell}$ (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 69%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively, and HANs (haloacetonitriles), HKs (haloketones) and chloropicrin were analyzed in trace level. Chloroform occupied about 89% in total THMs in concentration of $61.5ng/m{\ell}$, 95% of HANs was DCAN (dichloroacetonitrile) in $0.72ng/m{\ell}$, 50% of HAAs was TCAA (trichloroacetic acid). On the study of relationship in formation among the DBPs, HANs forms with THMs competitively to the point of the concentration of $40ng/m{\ell}$ of THMs. For HAAs, it did not show the prominent tendency. But it was observed that the compounds of large oxidation state are formed at first, and becomes to the compounds of low oxidation states.

Formation of Disinfection By-Products from Blue-green Algae by Chlorination (남조류의 염소처리에 따른 미량의 염소 소독부산물 생성에 관한 연구)

  • Son, Hee-Jong;Jung, Jong-Moon;Yeom, Hoon-Sik;Choi, Jin-Taek;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.21 no.8
    • /
    • pp.1015-1021
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THMs), haloacetic acid (HAAs), haloacetonitriles (HANs) and others from chlorination of algogenic organic matter (AOM) of Microcystis sp., a blue-green algae. AOM of Microcystis sp. exhibited a high potential for DBPs formation. HAAs formation potential was higher than THMs and HANs formation potential. The percentages of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) formation potential were 43.4% and 51.4% in the total HAAs formation potential. In the case of HANs formation potential, percentage of dichloroacetonitrile (DCAN) formation potential was 97.7%. Other DBPs were aldehydes and nitriles such as acetaldehyde, methylene chloride, isobutyronitrile, cyclobutanecarbonitrile, pentanenitrile, benzaldehyde, propanal, 2-methyl, benzyl chloride, (2-chloroethyl)-benzene, benzyl nitrile, 2-probenenitrile and hexanal.

Evaluation of Biodegradation Characteristics of Haloacetic Acids by a Biofilm in a Drinking Water Distribution System (상수관망에서 생물막에 의한 Haloacetic Acids 생물분해 특성 평가)

  • Son, Hee-Jong;Kim, Do-Hwan;Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1635-1642
    • /
    • 2014
  • Haloacetic acids (HAAs) concentrations have been observed to decreased at drinking water distribution system extremities. This decrease is associated with microbiological degradation by pipe wall biofilm. The objective of this study was to evaluate HAAs degradation in a drinking water system in the presence of a biofilm and to identify the factors that influence this degradation. Degradation of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) was observed in a simulated distribution system. The results obtained showed that different parameters came into play simultaneously in the degradation of HAAs, including retention time, water temperature, biomass, and composition of organic matter. Seasonal variations had a major effect on HAAs degradation and biomass quantity (ATP concentration) was lower by 25% in the winter compared with the summer.

Study on Reactive Non-thermal Plasma Process combined with Metal Oxide Catalyst for Removal of Dilute Trichloroethylene

  • Han Sang-Bo;Oda Tetsuji;Park Jae-Youn;Park Sang-Hyun;Koh Hee-Seok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.292-300
    • /
    • 2006
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about $99\;\%$ at the specific energy of 40 J/L with passing through manganese dioxide. C=C ${\pi}$ bond cleavage of TCE substances gave DCAC, which has the single bond of C-C through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about $3{\sim}4\;eV$ compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into COx is required to about 400 J/L, but $CO_2$ selectivity remains about $60\;\%$.

Reaction Kinetics and Dependence of Energy Efficiency in the Dilute Trichloroethylene Removal by Non-thermal Plasma Process combined with Manganese Dioxide

  • Han, Sang-Bo;Oda, Tetsuji;Park, Jae-Youn;Koh, Hee-Seok;Park, Sang-Hyun;Lee, Hyun-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.552-553
    • /
    • 2005
  • In order to improve energy efficiency in the dilute trichloroethylene removal using the nonthermal plasma process, the barrier discharge treatment combined with manganese dioxide was experimentally studied. Reaction kinetics in this process was studied on the basis of final byproducts distribution. Decomposition efficiency was improved to about 99% at the specific energy 40J/L with passing through manganese dioxide. C=C $\pi$ bond cleavage in TCE gave DCAC (single bond, C-C) through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were broken easily in the subsequent catalytic reaction due to the weak bonding energy about 3 ~ 4 eV compared with the double bonding energy in TCE molecules. Oxidation byproducts of DCAC and TCAA from TCE decomposition are generated from the barrier discharge plasma treatment and catalytic surface chemical reaction, respectively. Complete oxidation of TCE into $CO_X$ is required to about 400J/L.

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

The Characteristics of Disinfection by-products Occurrence and Speciation in D Water Treatment Processes (D 정수처리장에서 소독부산물 발생 및 종분포 특성)

  • Kim, Sung-Joon;Kim, Jong-Min;Jeon, Yong-Tae;Park, Jong-Eun;Won, Chan-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.406-412
    • /
    • 2010
  • Concentrations and speciations of Trihalomethanes (THMs) and Haloacetic acids ($HAA_5$) that can be formed during chlorine disinfection by-product (DBPs) in full-scale drinking water treatment plants were investigated. Jeon-ju D water treatment plant that adopted conventional water treatment processes was chosen for investigation. SUVA values according to water treatment process changes were observed from 1.3 to 2.1. The process average concentrations of THMs was 7.4 ppb, 9.0 ppb and 14.7 ppb respectively, while the average concentrations of $HAA_5$ by each process which are precipitation water, filterater water, treated water, were 15.5 ppb, 14.9 ppb and 25.8 ppb respectively. DBPs concentrations was lower in the winter than summer. The major species of THMs was chloroform and the second highest was bromodichloromethane (BDCM) and the third highest was dibromochloromethane (DBCM). In case of $HAA_5$, the rate of trichloroacetic acid (TCAA) was detected. The species disribution of THMs is related to the change of SUVA and species disribution of $HAA_5$ is related to the concentrations of bromine and injection position of chlorine and injection quantity.

Characteristics of Chlorination Byproducts Formation of Urinary Organic Compounds (뇨 성분에서의 염소 소독부산물 생성 특성)

  • Seo, In-Sook;Son, Hee-Jong;Ahn, Wook-Sung;You, Sun-Jae;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • This study was conducted to analyze and determine the formation potential of chlorination DBPs from seven urinary compounds with or without Br$^-$. Three of seven components were kynurenine, indole and uracil that were relatively shown high the formation potential of chlorination DBPs concentrations. The reported results of THMs/DOC with or without Br$^-$ in kynurenine showed that THMs/DOC was detected 86.9 $\mu$g/mg when Br$^-$ was not added, and THMs/DOC was detected 100.8 $\mu$g/mg when Br$^-$ was presented. In indole, THMs/DOC was increased from 6.58 $\mu$g/mg to 31.4 $\mu$g/mg when Br$^-$ was added. Moreover, among them, the highest, second-highest and third-highest HAAs/DOC were shown in kynurenine, uracil and indole respectively. Specially, HAAs/DOC was significantly deceased in kynurenine and indole when Br$^-$ was presented. This was a totally different phenomenon for THMs/DOC. TCAA was dominated in HAAs for kynurenine and indole, and DCAA was also dominated in HAAs for uracil. The highest formation of HANs/DOC was shown in kynurenine whether or not Br$^-$ presented, and DCAN was predominant in HANs. HANs was not formed by chlorination in uracil. In addition, the formation of CH/DOC was relatively low in kynurenine and indole. The formation of CH/DOC was specially high(1,270 $\mu$g/mg) in uracil when Br$^-$ was not added. The formation of CH/DOC was 1,027 $\mu$g/mg in uracil when Br$^-$ was added. The formations of THMs and HAAs were also investigated in kynurenine, indole and uracil when Br$^-$ was presented or not. The formation of THMs/DOC was higher in kynurenine and indole when Br$^-$ was presented. The formation of HAAs/DOC was reduced in kynurenine when Br$^-$ was added. The result could be attributed to higher formation of THMs/DOC in kynurenine when Br$^-$ was added. The formation of HAAs/DOC was also reduced in indole when Br$^-$ was added. To the contrary, this result was not attributed to higher formation of THMs/DOC in indole when Br$^-$ was added.

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Changes of International Aviation Regimes (국제항공 레짐의 변화)

  • Lee, Jong-Sik
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.17
    • /
    • pp.55-89
    • /
    • 2003
  • What are the international aviation regimes? It is said that they are sets of principles, norms, rules, and decision-making procedures of international aviation around which aviation actors' (states-actors, intergovernmental aviation organization, international aviation conventions, airlines and their organizations etc.) expectations converge in a given aviation issue-area for the purposes of the human welfare and the operations of the stable civil aviation. In this regards, the purposes of this study are focused on the aviation actors' shifts. Chronologically, international aviation regimes have been developed by some stages as followings; The 1st stage is the period from 1944 Chicago Convention to 1978 US Deregulation Act, when the aviation regulations and rules within the international aviation relations were implemented by Chicago-Bermuda regimes as Christer Jonsson pointed out. In this first stage, the sovereignty for the airspace over their countries is absolute. The second stage is the period from 1978 to '1992 Open Skies Agreement' between US and Netherlands. In this regime, airlines' activities as well as state-actors' have been actuated. The third stage is the period from 1992 to the contemporary. In this stage, airlines' activities for the consumers such as 'Open Skies Agreements', 'e-commerce business', 'airspace open policy within EU area', 'service open policy of WTO', and 'airlines' strategic alliance' are the central focal points in the world aviation relationship. In the conclusion, this phenomenon of the core actors in the international aviation rules has been shifted from the states-actors to the non-states actors especially, operating airlines, or consuming customers. Finally, I' d like to suggest that international aviation regimes should be developed to promote and facilitate the globalized level for the people's movements among the global aviation society. That is the way to proceed to the welfare and peace for all human beings of the World.

  • PDF