A Study on Formation Pattern of DBPs by Disinfection of Drinking Raw Water

음용 원수의 염소소독에 의한 소독부산물 생성패턴에 관한 연구

  • Lee, Kang Jin (Woongjin coway CO. LTD.) ;
  • Hong, Jee Eun (Bioanalysis & Biotransformation Research Center, Korea Institute Science & Technology) ;
  • Pyo, Heesoo (Bioanalysis & Biotransformation Research Center, Korea Institute Science & Technology) ;
  • Park, Song-Ja (Bioanalysis & Biotransformation Research Center, Korea Institute Science & Technology) ;
  • Yoo, Je Kang (Woongjin coway CO. LTD.) ;
  • Lee, Dae Woon (Department of Chemistry, Yonsei University)
  • 이강진 (웅진코웨이(주) 수질분석센터) ;
  • 홍지은 (한국과학기술연구원, 생체대사연구센터) ;
  • 표희수 (한국과학기술연구원, 생체대사연구센터) ;
  • 박송자 (한국과학기술연구원, 생체대사연구센터) ;
  • 유제강 (웅진코웨이(주) 수질분석센터) ;
  • 이대운 (연세대학교 화학과)
  • Received : 2003.04.17
  • Accepted : 2003.05.14
  • Published : 2003.06.25

Abstract

The disinfection of drinking water to control microbial contaminants results in the formation of secondary chemical contaminants, DBPs (disinfection by-products). It was studied the formation pattern of DBPs in drinking raw water after hypochlorite, chlorine disinfectant, was added in this study. It was determined TOC (total organic carbon), residual chlorine, turbidity and DBPs in raw water from Han-river during 1~14 days. Total DBPs was $101.3ng/m{\ell}$ (789.6 nM) after 7days and THMs (trihalomethanes) are the dominant portion of 69%. HAAs (haloacetic acids) and chloral hydrate were determined 19% and 10% respectively, and HANs (haloacetonitriles), HKs (haloketones) and chloropicrin were analyzed in trace level. Chloroform occupied about 89% in total THMs in concentration of $61.5ng/m{\ell}$, 95% of HANs was DCAN (dichloroacetonitrile) in $0.72ng/m{\ell}$, 50% of HAAs was TCAA (trichloroacetic acid). On the study of relationship in formation among the DBPs, HANs forms with THMs competitively to the point of the concentration of $40ng/m{\ell}$ of THMs. For HAAs, it did not show the prominent tendency. But it was observed that the compounds of large oxidation state are formed at first, and becomes to the compounds of low oxidation states.

한강에서 채취한 원수에 염소소독제인 hypochlorite를 $10{\mu}g/m{\ell}$의 농도로 투여한 후 1시간~14일까지 TOC (total organic carbon), 잔류염소량 및 탁도 등을 측정하고 THMs (trihalomethanes), HANs (haloacetonitriles), HKs (haloketones), chloral hydrate 및 HAAs (haloacetic acids) 등의 염소소독 부산물의 생성율을 조사하였다. 그 결과 잔류염소량은 투여후 1시간 경과 시 $6{\mu}g/m{\ell}$ 이상에서 14일째에 $1.23{\mu}g/m{\ell}$으로 감소하였으며 TOC 및 탁도는 큰 차이가 없었다. 7일 후 발생한 총 소독부산 물의 농도는 $101.3ng/m{\ell}$ (789.6 nM)이며 이 중 THMs이 69%로 가장 큰 비중을 차지하였다. 그 외에 HAAs가 19%, chloral hydrate가 10% 정도 검출되었으며, HANs와 HKs 및 chloropicrin 등은 미량 검출되었다. THMs 중에서는 chloroform이 $61.5ng/m{\ell}$로 총 THMs 중 약 89% 정도를 차지하였으며 HANs 중에서는 DCAN이 95%인 $0.72ng/m{\ell}$, HAAs 중에서는 TCAA가 50% 등으로 가장 높은 비율로 검출되었다. 각 부산물의 발생량의 상관관계를 조사한 결과 THMs과 HANs의 경우 THMs의 농도가 $40ng/m{\ell}$인 지점을 경계로 HANs과 경쟁적 발생관계가 있음이 나타났다. HAAs의 경우는 특별한 경향성을 나타내지 않았으나 전체적으로 초기에 산화상태가 큰 화합물에서 산화상태가 작은 화합물로 점차 변화하는 것으로 관찰되었다.

Keywords

References

  1. Health Effects of Disinfects and Disinfection By-Products R. J. Bull;F. C. Kopfler
  2. Caricnogenesis Program National Cancer Institute Report on Carcinogenesis Bioassay of Chloroform
  3. a. National Interim Primary Drinking Water Regulations. Fed. Reg. v.44
  4. Environmental Science & Technology v.15 no.3 b. J. A. Cotruvo https://doi.org/10.1021/es00085a002
  5. Fed. Reg. v.59 no.145
  6. Environmental Science & Technology v.18 no.5 B. R. Holbom;R. H. Voss;R. D. Mortimer;A. Wong https://doi.org/10.1021/es00123a009
  7. Chemosphere v.15 no.5 Determination of the strong mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in chlorinated drinking and humic waters J. Hemming;B. Holmbom;M. Reunanen;L. Kronberg https://doi.org/10.1016/0045-6535(86)90003-2
  8. Mutation Research/Genetic Toxicology v.206 no.2 L. Kronberg;T. Vartianen https://doi.org/10.1016/0165-1218(88)90158-9
  9. Water Chlorination:Chemistry, Environmental Impact and Health Effects v.6 H. Horth;M. Fielding;H. James;M. Thomas;T. Gibson;P. Wilcox;R. L. Jolley(ed.);L. W. Condie(ed.);J. O. Johnson(ed.);S. Katz(ed.);R. A. Minear(ed.);J. S. Mattice(ed.);A. Jacobs(ed.)
  10. Mutation Research/Genetic Toxicology v.189 no.4 Studies on the potent bacterial mutagen, 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone: aqueous stability, XAD recovery and analytical determination in drinking water and in chlorinated humic a J. R. Meier;R. B. Knohl;W. E. Coleman;H. P. Ringhand;J. W. Munch;W. H. Kaylor;R. P. Streicher;F. C. Kopfler https://doi.org/10.1016/0165-1218(87)90044-9
  11. Journal of the National Cancer Institute v.89 no.12 Carcinogenicity of the Drinking Water Mutagen 3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in the Rat H. Komulainen;V. M. Kosma;S. L. Vaittinen;T. Vartiainen;E. Kaliste-Korthonen;S. Lotjonen;R. K. Tuominen https://doi.org/10.1093/jnci/89.12.848
  12. Method 524.2. Measurement of Purgeable Organic Compounds in Water by Capillary Column Gas Chromatography/Mass National Exposure Research laboratory;Office of Research and Developement;U.S. Environmental Protection Agency
  13. Water Research v.35 no.12 A Study on the Distribution of Chlorination By-Products (CBPs) In Treated Water in Korea Song-Ja Park;Kang-Jin LEE;Byoung Hwa Kim;Jee Eun Hong;Heesoo Pyo;Dae Woon Lee https://doi.org/10.1016/S0043-1354(00)00583-2
  14. J. Am. Water Works Assoc. v.63 A. A. Stevens;C. J. Slocum;D. P. Seeger;G. G. Robeck
  15. Water Chlorination: environ. impact and health effects v.2 J. C. Moris;B. Baum
  16. J. Am. Water Works Assoc. v.70 no.11 R. R. Trussell;M. D. Umphres
  17. Mechanism of organic halides formation during fulvic acid chlorination and implication with respect to preozonation v.5 D. A. Reckhow;P. C. Singer
  18. Environmental Science & Technology v.17 no.10 D. A. Reckhow;D. L. Norwood;D. S. Millington(et. al.) https://doi.org/10.1021/es00116a012
  19. Water Research v.22 no.3 The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation/chlorination treatment of drinking water J. Hoigne;H. Bader https://doi.org/10.1016/S0043-1354(88)90120-0