• Title/Summary/Keyword: TBM 운영

Search Result 24, Processing Time 0.023 seconds

Domestic and Overseas TBM Production Specification and Professional Training Program (국내외 TBM 제작 사양 및 전문인력 양성 프로그램 분석)

  • Kim, Ki-Hwan;Kim, Seong-Cheol;Kang, Si-On;Mun, Cheol-Hwa;Jeong, Yun-Young;Kim, Hyouk
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.281-291
    • /
    • 2019
  • In Overseas case, most tunnels in under are or through the river are constructed with shield TBM and the manufacturer orders of related equipment suitable for the project are mode. Accordingly, the client provides the specifications required for the equipment manufacture. In addition, TBM equipment has been operated by those who have completed the expert training program, which for minimizing the risk of equipment operation in construction field corresponding to the mechanized construction. However, in Korea, such a system related to above the program and specifications has not yet been built, which is causing a lot of difficulties in construction field. Therefore, this study investigated the differences in bidding guides provided by mechanized construction in domestic and abroad, and the professional education programs for expert training being conducted from overseas. Futhermore, we will propose the guidelines of essential equipment specification contained in domestic bidding and provide the necessary manual for the professional education program for TBM as the mechanized construction method.

Application technique on thrust jacking pressure of shield TBM in the sharp curved tunnel alignment by model tests (축소모형실험을 통한 급곡선 터널에서의 Shield TBM 추진 압력 적용 기술에 대한 연구)

  • Kang, Si-on;Kim, Hyeob;Kim, Yong-Min;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.335-353
    • /
    • 2017
  • This paper presents the application technique on thrust jacking pressuring of shield TBM in the sharp curved tunnel alignment by model tests. Recently, the application of shield TBM method as mechanized tunnelling is increasing to prevent the vibration and noise problems, which can be occurred in the NATM in the urban area in Korea. However, it is necessary to plan the sharp curved tunnel alignment in order to avoid the building foundation and underground structures, to develop the shield TBM operation technique in the shape curved tunnel alignment. Therefore, the main operation parameters of shield TBM in the curved tunnel alignment are reviewed and analyzed based on the case study and analytical study. The results show that the operation of shield jacking force system is the most important technique in the shape curved tunnel alignment. The simplified scaled model tests are also carried out in order to examine the ground-shield TBM head behaviour. The earth pressures acting on the head of shield TBM are investigated according to two different shield jacking force systems (uniform and un-uniform pressure) and several articulation angles. The results obtained from the model tests are analysed. These results will be very useful to understand the shield TBM head interaction behaviour due to the shield jacking operation technique in the shape curved tunnel alignment, and to develop the operation technique.

Analysis of Standard Construction by TBM Diameter through the Rock Scenario Models in the Field (현장 암반 시나리오 모델을 통한 TBM 구경별 표준 공사기간 분석)

  • Park, Hong Taea;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.2
    • /
    • pp.195-205
    • /
    • 2013
  • Construction Management means a comprehensive plan of given the resources and the operation of the elements to complete the construction within the construction period. The construction period of these shall be determined by calculation based on reliable initial business. However, in actual field, inaccurate task duration is determined to the intuitive judgments of representative, reference of a similar project construction period of the past. As previous studies for the improvement of existing methods, This study presented a standard model that can be utilized in the early stages of construction projects for the TBM method operating by diameter (2.6m, 3.0m, 3.5m, 5.0m, 8.0m), and This study presented and calculated construction period which can estimated quickly the entire outline the construction period Therefore, When performing TBM construction work in the future, the total construction period which presented and analyze by TBM diameter, can be used as a useful material which plan and manage construction contracts, construction estimating, construction planning to the basic planning stage, and the basic design stage.

Analysis of Excavation Speed and Direct Construction Cost Based on the Operating Productivities of TBM Method Site - Diameter 5.0m Target (수로터널공사의 효율성 분석을 통한 굴진속도 및 직접공사비 분석 - 구경 5.0m 중심으로)

  • Park, Hong Tae;Lee, Yang Kyu
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.328-335
    • /
    • 2012
  • The resource-based estimating based on standard unit price of construction work was estimated by multiplying the price per standard unit of work on the amount of labor, material, equipment use time. However, limitation of the resource-based estimating way does not adequately reflect the actual transactions prices. On the subject of water tunnel excavation as a new attempt to overcome these limitations, this study analyzed productivity by work type into cutter inspection/ exchange, TBM maintenance, TBM inspection/refueling, subsequent installations, tramcar, operating change, a cave-underground reinforcement / rock reinforcement, safety / meetings and analyzed actual cost estimating and the net advance rate based on this analysis result. Actual cost estimating calculation approach presented in this study can be utilized as a useful tool to predict the actual cost estimating in the TBM water tunnels field.

Investigation of Prior Technology and Development Case for Consecutive Excavation Technique of Shield TBM (연속굴착 쉴드 TBM 기술 관련 해외기술 및 개발사례 조사)

  • Mun-Gyu Kim;Jung-Woo Cho;Hyeong-seog Cha
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.299-311
    • /
    • 2023
  • Continuous excavation technologies are developed to improve the excavation rate of shield TBM. Continuous excavation is a technology that provides thrust to segments, excluding being installed one, to reduce tunneling downtime. This paper investigated the prior technology related to continuous excavation segments. The main technology was classified into helical segment, honeycomb segment, and conventional segment methods. The helical segment method has not been applied in actual construction yet, and the honeycomb segment method has not succeeded in commercialization. The continuous excavation method using conventional segments has been successfully demonstrated. The thrust force and operation method of the thrust jacks for the semi-continuous technology were analyzed. Continuous excavation TBM research is also progressing in Korea, and through the analysis of successful cases, the need to develop independent continuous excavation methods has been identified.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test (압입시험 및 세르샤 마모시험에 의한 TBM의 설계변수 추정)

  • Jeong, Ho-Young;Lee, Sudeuk;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Linear cutting test is known to be very effective to determine machine parameters (i.e. thrust force and torque) and to estimate penetration rate of TBM and other operation conditions. Although the linear cutting test has significant advantages, the test is expensive and time-consuming because it requires large size specimen and high load capacity of the testing machine. Therefore, a few empirical prediction models (e.g. CSM, NTNU and QTBM) alternatively adopt laboratory index tests to estimate design parameters of TBM. This study discusses the estimation method of TBM machine parameters and disc cutter consumption using punch penetration test and Cerchar abrasion test of which the researches are rare. The cutter forces and cutter consumption can be estimated by the empirical models derived from the relationship between laboratory test result with field data and linear cutting test data. In addition, the estimation process was programmed through which the design parameters of TBM (e.g. thrust, torque, penetration rate, and cutter consumption) are automatically estimated using laboratory test results.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A Study on Surface Settlement Prediction Method of Trenchless Technology Pipe Jacking Method (비개착 강관압입공법의 지표침하 예측방법 연구)

  • Chung, Jeeseung;Lee, Gyuyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.29-37
    • /
    • 2015
  • Non-excavation method is needed to secure the stability of existing structures during construction. Therefore, prediction of ground settlement is essential. Causes of settlement when using steel pipe indentation method are leading pipe-steel pipe gap, excessive excavation and soil-steel pipe friction etc. Also they are similar to the causes of settlement when using Shield TBM during construction. In this study, ground settlement during steel pipe indentation is predicted by the Gap Parameter Method and Volume Loss Method which are kinds of Shield TBM prediction Method. and compared with those of prediction methods by conducting field test. As a result, Volume Loss Prediction Method is the most similar to the field tests. However, It is needed to additional studies, such as decision of the factors and adaptability for total settlement predictions of non-excavation method.

A Study on Standard Construction Process Management System for Prediction of Proper Construction Period of Subsea Tunnel (해저터널 적정 공사기간 예측을 위한 표준공정관리 체계 연구)

  • Bae, Keunwoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.4
    • /
    • pp.36-47
    • /
    • 2017
  • As a typical domestic subsea tunnel construction the Gadeok subsea tunnel applying the method of immersed tunnel has been completed and the Boryeong-Taean subsea tunnel is under construction using NATM. The high-speed railway subsea tunnels between the Honam and Jeju are under consideration, and the feasibility of constructing subsea tunnels with Japan and China is also under consideration. However, it is difficult to provide the process plan information for the construction work such as the analysis of the feasibility of the subsea tunnel and the prediction of the proper construction period because there is no case of domestic construction for it applying the shield TBM method. Due to economic and other reasons, government organizations are reluctant to apply the shield TBM, and there is lack of data on the construction process management field using the shield TBM method. Therefore, a standard construction process management system for the subsea tunnel is needed to analyze the feasibility of the subsea tunnel and to predict the proper construction period. By presenting the standard construction process management system of subsea tunnels such as WBS, Network Diagram, and construction period calculation model, I hope to contribute technically and economically to future subsea tunnel projects.