• Title/Summary/Keyword: T-type plate

Search Result 197, Processing Time 0.028 seconds

Numerical study on effect of integrity reinforcement on punching shear of flat plate

  • Ahsan, Raquib;Zahura, Fatema T.
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Reinforced concrete flat plates consist of slabs supported directly on columns. The absence of beams makes these systems attractive due to advantages such as economical formwork, shorter construction time, less total building height with more clear space and architectural flexibility. Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. To analyze the flat plate behavior under punching shear, twelve finite element models of flat plate on a column with different parameters have been developed and verified with experimental results. The maximum range of variation of punching stress, obtained numerically, is within 10% of the experimental results. Additional finite element models have been developed to analyze the influence of integrity reinforcement, clear cover and column reinforcement. Variation of clear cover influences the punching capacity of flat plate. Proposed finite element model can be a substitute to mechanical model to understand the influence of clear cover. Variation of slab thickness along with column reinforcement has noteworthy impact on punching capacity. From the study it has been noted that integrity reinforcement can increase the punching capacity as much as 19 percent in terms of force and 101 percent in terms of deformation.

Effect of Garlic and Onion Juice Addition on the Lipid Oxidation, Total Plate Counts and Residual Nitrite Contents of Emulsified Sausage during Cold Storage (마늘즙 또는 양파즙 첨가가 유화형 소시지의 저장 중 지방 산화, 총 미생물수 및 아질산염잔존량에 미치는 영향)

  • Park, Woong-Yeoul;Kim, Young-Jik
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.612-618
    • /
    • 2009
  • The objective of this study was to determine the antioxidant and antimicrobial effects of garlic juice and onion juice in emulsified sausage during cold storage. The sausages were into five groups: control, 1% garlic juice (T1), 3% garlic juice (T2), 1% onion juice (T3), and 3% onion juice (T4). Each sausage type was tested in triplicate and assigned to one of four storage periods: 0, 7, 14 and 21 days. As storage time increased, the presence of garlic juice and onion juice resulted in decreased pH, residual nitrite value, and increased peroxide value, TBARS (thiobarbituric acid reactive substance) values, and total plate counts. The pH value, peroxide value, TBARS, residual nitrite and total plate counts were significantly decreased by the addition of garlic and onion juice relative to the control (p<0.05). Especially, T2 was significantly (p<0.05) more effective in delaying lipid oxidation compared to the other treatment groups. However, no significant difference (p<0.05) was found in total plate counts among all the formulations on day 0. Also, the use of garlic juice resulted in much better antioxidant and antimicrobial effects than the use of onion juice and the control. In conclusion, this study demonstrates that the addition of 3% garlic juice (T2) to emulsified sausages tended to improve antioxidative and antimicrobial effects during storage relative to the other treatment groups.

Optimal Design of a Heat Sink Using the Kriging Method (크리깅 방법에 의한 방열판 최적설계)

  • Ryu Je-Seon;Rew Keun-Ho;Park Kyoungwoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1139-1147
    • /
    • 2005
  • The shape optimal design of the plate-fin type heat sink with vortex generator is performed to minimize the pressure loss subjected to the desired maximum temperature numerically. Evaluation of the performance function, in general, is required much computational cost in fluid/thermal systems. Thus, global approximate optimization techniques have been introduced into the optimization of fluid/thermal systems. In this study, Kriging method Is used to obtain the optimal solutions associated with the computational fluid dynamics (CFD). The results show that when the temperature .rise is less than 40 K, the optimal design variables are $B_1=2.44\;mm,\;B_2=2.09\;mm$, and t=7.58 mm. Kriging method can dramatically reduce computational time by 1/6 times compared to SQP method so that the efficiency of Kriging method can be validated.

Optimal Design of a Heat Exchanger with Vortex Generator (와류발생기가 부착된 열교환기 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1219-1224
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for thermal stability is conducted numerically. To acquire the optimal design variables, the CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method. The results show that when the temperature rise is less than 40 K, the optimal design variables are as follows; $B_1=2.584mm$, $B_2=1.741mm$, and t = 7.914 mm. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The Pareto optimal solutions are also presented between the pressure drop and the temperature rise.

  • PDF

Design of an Ammonia/water Bubble Absorber with Binary Nanofluids (이성분 나노유체를 이용한 암모니아/물 기포 흡수기 설계)

  • Kim Jin-Kyeong;Kim Sung-Soo;Kang Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.556-562
    • /
    • 2006
  • The objectives of this paper are to analyze simultaneous heat and mass transfer performance for a plate type bubble absorber with binary nanofluids numerically and to investigate the effects of binary nanofluids and surfactants on the size of the bubble absorber. The effective absorption ratio represents the effect of binary nanofluids and surfactants on the absorption performance. The kinds and concentrations of nano-particles and surfactants are considered as the key parameters. The results show that the addition of surfactants can reduce the size of absorber up to 74.4%, the application of binary nanofluids does the size up to 63.6%. Combination of binary nanofluids and surfactants can reduce the size of absorber up to 77.4%.

A Study on the Temperature and Electrical Characteristics of Carbon Heater (카본 발열체의 온도 및 전기적 특성에 관한 연구)

  • Jin, Z.H.;Shim, K.J.;Kong, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • This paper aims to study several type heaters which are mica heater, film heater, quartz heater and rod heater and to get an temteraturel and electrical characteristics. These four type heaters have a merit in many fields than present electric heater with nichrome wire. Carbon and mica plate heater have higher heat efficiency and less electromagnetic waves. Also it has been reported that far infrared ray emission from this heater is good for our health. Additionally heating element is thin and lighter plate. For these reasons, they will be widely used to various application such as room-heating or manufacturing goods. Experimental result confirmed that when 220V current authorized, the temperature, electric current, electric power and the resistance rise to stationary state in early stage. Moreover, the temperatures and electric characteristics show a good stability.

  • PDF

Axial Behavior of Reinforced Concrete Columns Externally Strengthened with Unbonded Wire Rope and T-Shaped Steel Plate (와이어로프와 T 강판으로 비부착 보강된 철근콘크리트 기둥의 중심 축하중 거동)

  • Yang, Keun-Hyeok;Sim, Jae-Il;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • An improved unbonded-type column strengthening procedure using wire rope and T-shaped steel plate units was proposed. Eight strengthened columns and an unstrengthened control column were tested under concentric axial load. The main variables considered were the volume ratio of wire rope and the flange width and configuration of T-shaped steel plates. Axial load capacity and ductility ratio of columns tested were compared with predictions obtained from the equation specified in ACI 318-05 and those of conventionally tied columns tested by Chung et al., respectively. In addition, a mathematical model was proposed to evaluate the complete stress-strain relationship of concrete confined by the wire rope and T-plate units. Test results showed that the axial load capacity and ductility of columns increased with the increase of the volume ratio of wire rope and the flange width of T-plates. In particular, at the same lateral reinforcement index, a much higher ductility ratio was observed in the strengthened columns having the volume ratio of wire rope above 0.0039 than in the tied columns. A mathematical model for the stress-strain relationship of confined concrete using the proposed strengthening procedure is developed. The predicted stress-strain curves were in good agreement with test results.

Design and Test of ASME Strainer for Coolant System of Research Reactor (연구용 원자로 냉각계통의 ASME 스트레이너 설계 및 성능시험)

  • Park, Yong-Chul;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.24-29
    • /
    • 1999
  • The ASME strainers have been newly installed at the suction side of each reactor coolant pump to get rid of the foreign materials which may damage the pump impeller or interfere with the coolant path of fuel flow tube or primary plate type heat exchanger. The strainer was designed in accordance with ASME SEC. III, DIV. 1, Class 3 and the structural integrity was verified by seismic analysis. The screen was designed in accordance with the effective void area from the result of flow analysis for T-type strainer. After installation of the strainer, it was confirmed through the field test that the flow characteristics of primary cooling system were not adversely affected. The pressure loss coefficient was calculated by Darcy equation using the pressure difference through each strainer and the flow rate measured during the strainer performance test. And these are useful data to predict flow variations by the pressure difference.

  • PDF

A Study on Sound Radition from the Periodic Structure depend on Symmetrical beam space Using FEM (FEM을 이용한 대칭형 보강재에 보강된 평판의 음향방사에 관한 연구)

  • Kim J.T.;Kim T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.732-739
    • /
    • 2005
  • The determination of sound pressure radiated from periodic plate structures is fundamental in the estimation of noise level in aircraft fuselages or ship hull structures. As a robust approach to this problem, here a very general and comprehensive analytical model is developed for predicting the sound radiated by a vibrating plate stiffened by periodically spaced orthogonal symmetrical beams subjected to a sinusoidally time varying point load. In this these, we experiment with the numerical analysis using the space harmonic series and the SYSNOISE for measuring the vibration mode and character of response caused by sound radiation with adding the harmonic point force in the thin isotropic plate supported by the rectangular lattice reinforcement. We used the reinforcements, beams of open type section like the style of 'ㄷ' letter; the space of the beams were chosen to be 0.2m, 0.3m, 0.4m. We studied the behavior of sound pressure levels, analysis of vibration mode between support points, connection between frequency function and sound pressure levels, and connection between position function and sound pressure levels.

  • PDF

Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator

  • Park, Kyoungwoo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1590-1603
    • /
    • 2004
  • In this study the optimization of plate-fin type heat sink with vortex generator for the thermal stability is performed numerically. The optimum solutions in the heat sink are obtained when the temperature rise and the pressure drop are minimized simultaneously. Thermal performance of heat sink is influenced by the heat sink shape such as the base-part fin width, lower-part fin width, and basement thickness. To acquire the optimal design variables automatically, CFD and mathematical optimization are integrated. The flow and thermal fields are predicted using the finite volume method. The optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used for the constrained nonlinear optimization problem. The results show that the optimal design variables are as follows; B$_1$=2.584 mm, B$_2$=1.741 mm, and t=7.914 mm when the temperature rise is less than 40 K. Comparing with the initial design, the temperature rise is reduced by 4.2 K, while the pressure drop is increased by 9.43 Pa. The relationship between the pressure drop and the temperature rise is also presented to select the heat sink shape for the designers.