• 제목/요약/키워드: T-joint Welding

검색결과 126건 처리시간 0.021초

초고강도 합금강의 이종마찰교반 접합부에서의 미세조직 특성 및 기계적 물성 연구 (Microstructural and Mechanical Analysis of a Friction Stir Welded Joint of Dissimilar Advanced High-Strength Steels)

  • 이지우;조훈휘;;;홍성태
    • 소성∙가공
    • /
    • 제29권1호
    • /
    • pp.11-19
    • /
    • 2020
  • For microstructural analysis of a friction stir welded (FSWed) joint of advanced high-strength steels, dual phase (DP) and complex phase (CP) steels, are studied. FSWed joints are successfully fabricated in the following four cases: (i) DP/DP; (ii) CP/CP; (iii) DP/CP, where the advancing side is DP and the retreating side is CP; (iv) CP/DP, where the advancing side is CP and the retreating side is DP. The stir zone (SZ) of (i) the DP/DP joint mainly consists of lath martensite, while the stir zone of (ii) the CP/CP joint consists not only of lath martensite but also of bainite. In the case of (iii) DP/CP and (iv) CP/DP, they exhibit a similar microstructure including acicular-shaped phases in the joints; however, cross-sections of the joints show differences in material mixing in each case. In (iv) the CP/DP joint, temperature towards the CP steel is sufficient to cause softening, thus leading to better mixing than that in (iii) DP/CP. The phases of the SZ in each of the four cases are formed by phase transformation during the FSWed process; however, the transformed phase volume fraction of CP steel is lower than that of DP steel, indicating that dynamic recrystallization occurs mainly in CP steel. The hardness values of the SZ are significantly higher than those of the base materials, especially, the SZ of (iii) the DP/CP joint has the highest value due to highest fraction of lath martensite.

횡방향 TIG 용접된 Al6013-T4알루미늄 합금 용접부의 피로균열전파거동에 미치는 PWHT의 영향 (Influences of Post Weld Heat Treatment on Fatigue Crack Growth Behavior of Transverse TIG Welded Al6013-T4 Aluminum Alloy Joint)

  • 구나완;김선진
    • 동력기계공학회지
    • /
    • 제16권4호
    • /
    • pp.66-73
    • /
    • 2012
  • 본 연구는 횡방향 TIG 용접된 Al6013-T4 알루미늄 합금 용접부의 피로균열전파거동에 미치는 용접후열처리(PWHT)의 영향을 조사하는 것이 주목적이다. 기초적으로 인장시험, 경도 및 미세조직이 조사되었으며, 피로균열전파거동을 고찰하기 위한 피로 시험은 모두 중앙균열인장(CCT) 시험편에 대하여 수행되었다. T82열처리에 있어서 시효시간은 피로균열전파율, 인장강도 및 경도에 대단히 민감함을 나타내었으며, 모재와 열영향부재의 경우가 용접재보다 기계적 성질이 우수하였다. 횡방향 TIG 용접한 Al6013-T4 시험재의 용접후열처리 조건에 따라서 피로균열전파 저항에는 차이가 나타났으며, 본 실험의 조건하에서 24시간 인공시효 PWHT-82 시험편이 피로균열전파 저항이 가장 우수한 결과를 나타내었다.

Nd:YAG 레이저빔을 이용한 SCP 강판과 STS304강판 용접시 오프셋(off-set) 위치 결정에 관한 연구 (A study of the determination of off-set position for Nd:YAC laser welding between SCP steel sheet and STS304 sheet)

  • 윤부선;김도훈;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제7권2호
    • /
    • pp.1-10
    • /
    • 2004
  • This work was attempted to join SCP sheet and STS304 sheet by using Nd:YAC laser beam. SCP sheet has good formability and low cost, while STS304 has excellent corrosion resistance and mechanical properties in high temp. In this experiment, butt joint type was used to develop the tailored blank welding for dissimilar steel. Sheets which have different thermal properties. Computer simulation was conducted to obtain the off-set position for efficient welding by considering laser power, scanning speed, focal length and basic properties. The result showed that the optimum thermal distribution was obtained when the laser beam was irradiated at $0.05{\sim}0.1$ mm off-set toward the SCP sheet side. The experiment was conducted based on the result of computer simulation to show the same optimum conditions. Optimum conditions were 3KW in laser beam power, 6m/min in scanning speed, -0.5mm in focal position, 0.1mm off-set toward SCP. Microhardness test, tensile test, bulge test, optical microscopy, EDS, and XRD were performed to observe the microstructure around fusion zone and to evaluate the mechanical properties of optimum conditions, The weld zone had high microhardness values by the formation of the martensitic structure. Tensile test measured the strength of welded region by vertical to strain direction and the elongation of welded region by parallel to strain direction. Bulge test showed $52\%$ formability of the original materials. Bead shape, grain size, and martensitic structure were observed by the optical microscopy in the weld zone. Detailed results of EDS, XRD confirmed that the welded region was connected of martensitic structure.

  • PDF

Comprehensive Residual Stress Distributions in a Range of Plate and Pipe Components

  • Lee Hyeong-Yeon;Kim Jong-Bum;Lee Jae-Han;Nikbin Kamran M.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.335-344
    • /
    • 2006
  • A comprehensive review of through thickness transverse residual stress distributions in a range of as-welded and mechanically bent components made up of a range of steels has been carried out, and simplified generic transverse residual stress profiles for a plate and pipe components have been proposed. The geometries consisted of welded pipe butt joints, T-plate joints, tubular T-joints, tubular Y-joints and a pipe on plate joints as well as cold bent tubes and pipes. The collected data covered a range of engineering steels including ferritic, austenitic, C-Mn and Cr-Mo steels. Measured residual stress data, normalised with respect to the parent material yield stress, has shown a good linear correlation versus the normalised depth of the region containing the residual stress resulting from the welding or cold-bending process. The proposed simplified generic residual stress profiles based on the mean statistical linear fit of all the data provides a reasonably conservative prediction of the stress intensity factors. Whereas the profiles for the assessment procedures are fixed and case specific, the simple bilinear profiles for the residual stresses obtained by shifting the mean and bending stress from the mean regression line have been proposed and validated.

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem;Sidi Mohamed Medjdoub;Madani Kouider;Kaddouri Nadia;Elajrami Mohamed;Belhouari Mohamed;Amin Houari;Salah Amroune;R.D.S.G. Campilho
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.83-103
    • /
    • 2024
  • Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

용접상세의 변화에 따른 용접이음부의 잔류응력에 관한 연구 (A Study on the Residual Stress in the Welded Joints with Different Details)

  • 임청권;박문호
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.709-720
    • /
    • 1998
  • 용접잔류응력의 모재두께방향을 포함하는 3차원 분포를 파악하기 위해, 용접상세를 변화시킨 필렛용접이음을 대상으로 해서 실험 및 해석을 수행하였다. 특히, 지금까지 계측이 곤란했던 필렛용접이음의 용접루트부의 잔류응력을 실측하였다. 파라메타로써는 용접입열량과 용접층수를 취급하고, 모재두께방향을 포함하는 3차원 잔류응력의 분포를 조사하였다. 그 결과, 입열량이 증가하면, 용접토우와 루트부를 포함하는 용접부에서는 잔류응력의 크기에 변화가 거의 없지만, 인장잔류응력의 영역이 크게 나타났다. 또 단층과 다층용접의 비교에서는, 다층용접 쪽이 단층용접보다 잔류응력이 상당히 낮음을 알 수 있었다. 용접부 근방의 인장잔류응력의 영역도 다층용접 쪽이 단층용접보다 작게 나타난 것을 알 수 있었다.

  • PDF

SP시험에 의한 TMCP강의 방향성 및 용접부의 파괴인성에 관한 연구 (A study on fracture toughness of welded joint and orientation in TMCP steel by th SP test)

  • 유효선;안병국;류대영;정세희
    • Journal of Welding and Joining
    • /
    • 제16권6호
    • /
    • pp.35-43
    • /
    • 1998
  • In this paper, the fracture toughness evaluation of the various microstructures such as HAZ, F.L and W.M in weldment of TMCP steel which has the softening zone owing to high heat input welding was carried out by using of the small punch(SP) test. In addition, the fracture toughness with the specimen orientation of rolled TMCP steel was investigated by means of SP test and the crack opening displacement (COD) test and then was compared with that of conventional SM50YB steel. From the results of SP test for TMCP steel, it could be seen that the SP energy transition curves of three different orientation were shifted to higher temperature side in order of S, T and L. But the {TEX}$DBTT_{SP}${/TEX} of each orientation specimen did not show a lot of differences and were quite lower than those of conventional SM50YB steel. The mechanical properties of HAZ structure in weldment of TMCP steel such as hardness, SP energy at room temperature and -196$^{\circ}C$ and the upper shelf energy of SP energy transition curve were lower than those of base metal due to softening. The {TEX}$DBTT_{SP}${/TEX} of each microstructure in weldment of TMCP steel increased in order of HAZ, F.L and W.M against base metal, but all microstructures showed a quite lower {TEX}$DBTT_{SP}${/TEX} than those of SM50YB steel.

  • PDF

십자형 필릿 용접부에서의 무한 피로수명 평가에 관한 연구 (A Study on Estimation of Infinite Fatigue Life in Cruciform Fillet Welded Joint)

  • 이용복
    • 한국가스학회지
    • /
    • 제17권1호
    • /
    • pp.19-25
    • /
    • 2013
  • 용접에 의한 가스설비, 교량, 선박 등 강 구조물의 접합 방법은 대부분 십자형이나 T형의 필릿 용접으로 이루어지며 구조물의 형상과 용도에 따라 완전 용입 또는 불완전 용입 상태로 이루어진다. 본 연구에서는 십자형 필릿용접 구조물에 대하여 재료 두께별 용입 깊이에 따른 피로 균열 특성을 파악하였고, 그 결과로부터 무한수명 영역내에서의 안전 설계응력에 대하여 고찰하였다. 미 용입 길이가 길면 루트 부 파괴가 되어 무한 수명 영역은 작고 미 용입 길이가 짧으면 토우부 파괴가 되어 무한 수명 영역은 크게 나타났다. 3층 용접한 재료 두께 20mm의 경우가 2층 용접한 재료 두께 10mm, 15mm의 경우보다 미세한 페라이트 침상 조직을 더 많게 형성시켜 노치 인성을 증가시키므로 서 피로강도와 무한 수명을 더 향상시킨 것으로 나타났다.

선체 탑재 이음부의 고능률 SAW 적용 (Application of high efficiency SAW process in erection joint of ship)

  • 윤광희;김진용;허만주
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.52-52
    • /
    • 2010
  • 선박건조에 있어서 대형 블록의 조립이 이루어지는 선행 탑재 및 탑재 단계에서 Tank Top과 Upper Deck의 V 개선 용접은 FCAW+SAW의 복합용접이 실시되고 있다. 그러나 가장 범용적 모재 두께인 18~20t의 경우 SAW 시공에만 약 5~6Pass가 소요됨으로써 다급한 진수 일정에 많은 지장을 초래하고 있다. 또한 능률 향상을 목적으로 용착량 증가효과를 얻기 위해 철분말이나 절선와이어를 개선면내에 충진하고 용접을 수행하나 획기적인 용접능률을 기대하기 어렵고 용접사 기량에 따라 용접 결함이 발생될 수 있다. 이에 따라 용접패스 수를 줄이고 결함 발생이 없는 용접기법 개발이 절실히 필요하였다. 이를 위해 매우 간단하고 효율적인 위빙장치를 제작하여 선탑/탑재 아래보기 용접이음에 1~2패스의 SAW 용접법을 개발하여 용접생산성은 물론 용접품질까지 획기적으로 향상시키는 기술 개발을 완료하였다.

  • PDF

Sn-40Pb/Cu 및 Sn-3.0Ag-0.5Cu/Cu 솔더 접합계면의 금속간화합물 형성에 필요한 활성화에너지 (Activation Energy for Intermetallic Compound Formation of Sn-40Pb/Cu and Sn-3.0Ag-0.5Cu/Cu Solder Joints)

  • 홍원식;김휘성;박노창;김광배
    • Journal of Welding and Joining
    • /
    • 제25권2호
    • /
    • pp.82-88
    • /
    • 2007
  • Sn-3.0Ag-0.5Cu lead fee solder was generally utilized in electronics assemblies. But it is insufficient to research about activation energy(Q) that is applying to evaluate the solder joint reliability of environmental friendly electronics assemblies. Therefore this study investigated Q values which are needed to IMC formation and growth of Sn-3.0Ag-0.5Cu/Cu and Sn-40pb/Cu solder joints during aging treatment. We bonded Sn-3.0Ag-0.5Cu and Sn-40Pb solders on FR-4 PCB with Cu pad$(t=80{\mu}m)$. After reflow soldering, to observe the IMC formation and growth of the solder joints, test specimens were aged at 70, 150 and $170^{\circ}C$ for 1, 2, 5, 20, 60, 240, 960, 15840, 28800 and 43200 min, respectively. SEM and EDS were utilized to analysis the IMCS. From these results, we measured the total IMC$(Cu_6Sn_5+Cu_3Sn)$ thickness of Sn-3.0Ag-0.5Cu/Cu and Sn-40Pb/Cu interface, and then obtained Q values for the IMC$(Cu_6Sn_5,\;Cu_3Sn)$ growth of the solder joints.