• Title/Summary/Keyword: T-S 퍼지 시스템

Search Result 170, Processing Time 0.026 seconds

A Study of Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기 부하 예측 시스템 연구)

  • Joo, Young-Hoon;Jung, Keun-Ho;Kim, Do-Wan;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a new design methods of the short-term load forecasting system (STLFS) using the data mining. The structure of the proposed STLFS is divided into two parts: the Takagi-Sugeno (T-S) fuzzy model-based classifier and predictor The proposed classifier is composed of the Gaussian fuzzy sets in the premise part and the linearized Bayesian classifier in the consequent part. The related parameters of the classifier are easily obtained from the statistic information of the training set. The proposed predictor takes form of the convex combination of the linear time series predictors for each inputs. The problem of estimating the consequent parameters is formulated by the convex optimization problem, which is to minimize the norm distance between the real load and the output of the linear time series estimator. The problem of estimating the premise parameters is to find the parameter value minimizing the error between the real load and the overall output. Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

Variable Speed Control of Wind Turbines Using Robust Fuzzy Algorithm (강인 퍼지 이론을 이용한 풍력 터빈의 가변 속도 제어)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this paper, we present the robust fuzzy algorithm for variable speed control of wind turbines. Generally, the plants of wind turbines are consisted of complex nonlinearities, and the parameters of variable speed of wind turbines are represented as uncertain terms. For solving these complexity, we propose the robust fuzzy algorithm. At first, the exact fuzzy modeling are performed for variable speed of wind turbines. Next, we design the fuzzy controller for reanalyzed T-S fuzzy model of the wind turbines, then, we prove the stability of the plant through the Lyapunov stability theorem. At last, an example is included for visualizing the efficiency of the proposed technique.

Missile Adaptive Control using T-S Fuzzy Model (T-S 퍼지 모델을 이용한 유도탄 적응 제어)

  • 윤한진;박창우;박민용
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.8
    • /
    • pp.771-775
    • /
    • 2001
  • In this paper, in order to control uncertain missile autopilot, an adaptive fuzzy control(AFC) scheme via parallel distributed compensation(PDC) is developed for the multi-input/multi -output plants represented by the Takagi-Sugeno(T-S) fuzzy model. Moreover adaptive law is designed so that the plant output tracks the stable reference model(SRM). From the simulations results, we can conclude that the suggested scheme can effectively solve the control problems of uncertain missile systems based on T-S fuzzy model.

  • PDF

Design of T-S Fuzzy-Model-Based Controller for Control of Autonomous Underwater Vehicles (무인 잠수정의 심도 제어를 위한 T-S 퍼지 모델 기반 제어기 설계)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.302-306
    • /
    • 2011
  • This paper presents Takagi-Sugeno (T-S) fuzzy-model-based controller for depth control of autonomous underwater vehicles(AUVs). Through sector nonlinearity methodology, The nonlinear AUV is represented by T-S fuzzy model. By using the Lyapunov function, the design condition of controller is derived to guarantee the performance of depth control in the format of linear matrix inequality (LMI). An example is provided to illustrate the effectiveness of the proposed methodology.

Design of T-S Fuzzy Model Based H Controller for Diving Control of AUV: An LMI Approach (무인 잠수정의 깊이 제어를 위한 T-S 퍼지 모델 기반 H 제어기 설계: 선형 행렬 부등식 접근법)

  • Jun, Sung-Woo;Kim, Do-Wan;Lee, Ho-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.441-447
    • /
    • 2012
  • This paper presents a design technique of a Takagi-Sugeno (T-S) fuzzy-model-based $H_{\infty}$ controller for autonomous underwater vehicles (AUVs). The design procedure aims to render the stabilizing controller which satisfies performance of the diving control for AUVs in the presence of the disturbance. A nonlinear AUV is modeled by the T-S fuzzy system through the sector nonlinearity. By using Lyapunov function, the sufficient conditions are derived to guarantee the performance of robust depth control in the format of linear matrix inequality (LMI). To succeed for diving control of AUV, we add the constraints on the diving and pitch angles in the LMI conditions. Through the simulation, we confirm the effectiveness of the proposed methodology.

A Fault Detection system Design for Uncertain Nonlinear Systems (불확실한 비선형시스템을 위한 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.185-189
    • /
    • 2007
  • This paper deals with a fault detection system design for nonlinear systems with uncertain time varying parameters modelled as a T-S fuzzy system. A coprime factorization for T-S fuzzy systems is defined and a residual generator is designed using a left coprime factor. A fault detection criteria derived from the residual generator is also suggested. In order to demonstrate the efficacy of the suggested method, the fault defection method is applied to an inverted pendulum system and computer simulations are performed.

A Fault Detection system Design for Uncertain Nonlinear Systems (불확실한 비선형시스템을 위한 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.356-361
    • /
    • 2006
  • This paper deals with a fault detection system design for nonlinear systems with uncertain time varying parameters modelled as a T-S fuzzy system. A coprime factorization for T-S fuzzy systems is defined and a residual generator is designed using a left coprime factor. A fault detection criteria derived from the residual generator is also suggested. In order to demonstrate the efficacy of the suggested method, the fault detection method is applied to an inverted pendulum system and computer simulations are performed.

  • PDF

A Fault Detection System Design for Nuclear Steam Generator Level Control System (원전 증기발생기 수위제어계통의 고장검출 시스템 설계)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 2006
  • This paper deals with a fault detection system design for nuclear steam generator water level control system. We expressed the nonlinear properties of the steam generator level system as a T-S fuzzy system with time varying uncertain parameters. We design a residual generator using a left coprime factorization of the T-S fuzzy model and a fault detection filter in order to improve the fault detection performance. We demonstrate the efficiency of the suggested design method via many computer simulations.

An H Output Feedback Control for Singularly Perturbed Fuzzy Systems (특이섭동 퍼지시스템의 H 출력 궤환제어)

  • Yoo, Seog-Hwan;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.316-323
    • /
    • 2004
  • This paper deals with an $H_{\infty}$ output feedback controller design for singularly perturbed T-S fuzzy systems. It is shown that the $H_{\infty}$ norm of the singularly perturbed T-S fuzzy system is less than ${\gamma}$ for a sufficiently small ${\varepsilon}$>0 if the $H_{\infty}$ norms of both the slow and fast subsystem are less than ${\gamma}$. Using this fact, we develop a linear matrix inequality based design method which is independent of the singular perturbation parameter ${\varepsilon}$. A numerical example is provided to demonstrate the efficacy of the proposed design method.